Metamath Proof Explorer


Theorem line2ylem

Description: Lemma for line2y . This proof is based on counterexamples for the following cases: 1. C =/= 0 : p = (0,0) (LHS of bicondional is false, RHS is true); 2. C = 0 /\ B =/= 0 : p = (1,-A/B) (LHS of bicondional is true, RHS is false); 3. A = B = C = 0 : p = (1,1) (LHS of bicondional is true, RHS is false). (Contributed by AV, 4-Feb-2023)

Ref Expression
Hypotheses line2ylem.i I = 1 2
line2ylem.p P = I
Assertion line2ylem A B C p P A p 1 + B p 2 = C p 1 = 0 A 0 B = 0 C = 0

Proof

Step Hyp Ref Expression
1 line2ylem.i I = 1 2
2 line2ylem.p P = I
3 ianor ¬ A 0 B = 0 C = 0 ¬ A 0 B = 0 ¬ C = 0
4 df-ne C 0 ¬ C = 0
5 0re 0
6 1 2 prelrrx2 0 0 1 0 2 0 P
7 5 5 6 mp2an 1 0 2 0 P
8 eqneqall C = 0 C 0 ¬ 0 = 0
9 8 com12 C 0 C = 0 ¬ 0 = 0
10 eqid 0 = 0
11 10 pm2.24i ¬ 0 = 0 C = 0
12 9 11 impbid1 C 0 C = 0 ¬ 0 = 0
13 12 adantl A B C C 0 C = 0 ¬ 0 = 0
14 xor3 ¬ C = 0 0 = 0 C = 0 ¬ 0 = 0
15 13 14 sylibr A B C C 0 ¬ C = 0 0 = 0
16 simp1 A B C A
17 16 recnd A B C A
18 17 mul01d A B C A 0 = 0
19 simp2 A B C B
20 19 recnd A B C B
21 20 mul01d A B C B 0 = 0
22 18 21 oveq12d A B C A 0 + B 0 = 0 + 0
23 00id 0 + 0 = 0
24 22 23 eqtrdi A B C A 0 + B 0 = 0
25 24 eqeq1d A B C A 0 + B 0 = C 0 = C
26 eqcom 0 = C C = 0
27 25 26 syl6bb A B C A 0 + B 0 = C C = 0
28 27 adantr A B C C 0 A 0 + B 0 = C C = 0
29 28 bibi1d A B C C 0 A 0 + B 0 = C 0 = 0 C = 0 0 = 0
30 15 29 mtbird A B C C 0 ¬ A 0 + B 0 = C 0 = 0
31 fveq1 p = 1 0 2 0 p 1 = 1 0 2 0 1
32 1ex 1 V
33 c0ex 0 V
34 1ne2 1 2
35 fvpr1g 1 V 0 V 1 2 1 0 2 0 1 = 0
36 32 33 34 35 mp3an 1 0 2 0 1 = 0
37 31 36 eqtrdi p = 1 0 2 0 p 1 = 0
38 37 oveq2d p = 1 0 2 0 A p 1 = A 0
39 fveq1 p = 1 0 2 0 p 2 = 1 0 2 0 2
40 2ex 2 V
41 fvpr2g 2 V 0 V 1 2 1 0 2 0 2 = 0
42 40 33 34 41 mp3an 1 0 2 0 2 = 0
43 39 42 eqtrdi p = 1 0 2 0 p 2 = 0
44 43 oveq2d p = 1 0 2 0 B p 2 = B 0
45 38 44 oveq12d p = 1 0 2 0 A p 1 + B p 2 = A 0 + B 0
46 45 eqeq1d p = 1 0 2 0 A p 1 + B p 2 = C A 0 + B 0 = C
47 37 eqeq1d p = 1 0 2 0 p 1 = 0 0 = 0
48 46 47 bibi12d p = 1 0 2 0 A p 1 + B p 2 = C p 1 = 0 A 0 + B 0 = C 0 = 0
49 48 notbid p = 1 0 2 0 ¬ A p 1 + B p 2 = C p 1 = 0 ¬ A 0 + B 0 = C 0 = 0
50 49 rspcev 1 0 2 0 P ¬ A 0 + B 0 = C 0 = 0 p P ¬ A p 1 + B p 2 = C p 1 = 0
51 7 30 50 sylancr A B C C 0 p P ¬ A p 1 + B p 2 = C p 1 = 0
52 51 expcom C 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
53 4 52 sylbir ¬ C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
54 notnotb C = 0 ¬ ¬ C = 0
55 ianor ¬ A 0 B = 0 ¬ A 0 ¬ B = 0
56 df-ne B 0 ¬ B = 0
57 1red A B C B 0 C = 0 1
58 16 adantr A B C B 0 C = 0 A
59 58 renegcld A B C B 0 C = 0 A
60 19 adantr A B C B 0 C = 0 B
61 simprl A B C B 0 C = 0 B 0
62 59 60 61 redivcld A B C B 0 C = 0 A B
63 1 2 prelrrx2 1 A B 1 1 2 A B P
64 57 62 63 syl2anc A B C B 0 C = 0 1 1 2 A B P
65 ax-1ne0 1 0
66 65 neii ¬ 1 = 0
67 10 66 2th 0 = 0 ¬ 1 = 0
68 xor3 ¬ 0 = 0 1 = 0 0 = 0 ¬ 1 = 0
69 67 68 mpbir ¬ 0 = 0 1 = 0
70 17 mulid1d A B C A 1 = A
71 70 adantr A B C B 0 C = 0 A 1 = A
72 17 negcld A B C A
73 72 adantr A B C B 0 C = 0 A
74 20 adantr A B C B 0 C = 0 B
75 73 74 61 divcan2d A B C B 0 C = 0 B A B = A
76 71 75 oveq12d A B C B 0 C = 0 A 1 + B A B = A + A
77 17 negidd A B C A + A = 0
78 77 adantr A B C B 0 C = 0 A + A = 0
79 76 78 eqtrd A B C B 0 C = 0 A 1 + B A B = 0
80 simprr A B C B 0 C = 0 C = 0
81 79 80 eqeq12d A B C B 0 C = 0 A 1 + B A B = C 0 = 0
82 81 bibi1d A B C B 0 C = 0 A 1 + B A B = C 1 = 0 0 = 0 1 = 0
83 69 82 mtbiri A B C B 0 C = 0 ¬ A 1 + B A B = C 1 = 0
84 fveq1 p = 1 1 2 A B p 1 = 1 1 2 A B 1
85 fvpr1g 1 V 1 V 1 2 1 1 2 A B 1 = 1
86 32 32 34 85 mp3an 1 1 2 A B 1 = 1
87 84 86 eqtrdi p = 1 1 2 A B p 1 = 1
88 87 oveq2d p = 1 1 2 A B A p 1 = A 1
89 fveq1 p = 1 1 2 A B p 2 = 1 1 2 A B 2
90 ovex A B V
91 fvpr2g 2 V A B V 1 2 1 1 2 A B 2 = A B
92 40 90 34 91 mp3an 1 1 2 A B 2 = A B
93 89 92 eqtrdi p = 1 1 2 A B p 2 = A B
94 93 oveq2d p = 1 1 2 A B B p 2 = B A B
95 88 94 oveq12d p = 1 1 2 A B A p 1 + B p 2 = A 1 + B A B
96 95 eqeq1d p = 1 1 2 A B A p 1 + B p 2 = C A 1 + B A B = C
97 87 eqeq1d p = 1 1 2 A B p 1 = 0 1 = 0
98 96 97 bibi12d p = 1 1 2 A B A p 1 + B p 2 = C p 1 = 0 A 1 + B A B = C 1 = 0
99 98 notbid p = 1 1 2 A B ¬ A p 1 + B p 2 = C p 1 = 0 ¬ A 1 + B A B = C 1 = 0
100 99 rspcev 1 1 2 A B P ¬ A 1 + B A B = C 1 = 0 p P ¬ A p 1 + B p 2 = C p 1 = 0
101 64 83 100 syl2anc A B C B 0 C = 0 p P ¬ A p 1 + B p 2 = C p 1 = 0
102 101 expcom B 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
103 102 ex B 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
104 56 103 sylbir ¬ B = 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
105 notnotb B = 0 ¬ ¬ B = 0
106 nne ¬ A 0 A = 0
107 106 bicomi A = 0 ¬ A 0
108 1re 1
109 1 2 prelrrx2 1 1 1 1 2 1 P
110 108 108 109 mp2an 1 1 2 1 P
111 oveq1 A = 0 A 1 = 0 1
112 111 adantl B = 0 A = 0 A 1 = 0 1
113 ax-1cn 1
114 113 mul02i 0 1 = 0
115 112 114 eqtrdi B = 0 A = 0 A 1 = 0
116 oveq1 B = 0 B 1 = 0 1
117 116 adantr B = 0 A = 0 B 1 = 0 1
118 117 114 eqtrdi B = 0 A = 0 B 1 = 0
119 115 118 oveq12d B = 0 A = 0 A 1 + B 1 = 0 + 0
120 119 23 eqtrdi B = 0 A = 0 A 1 + B 1 = 0
121 id C = 0 C = 0
122 120 121 eqeqan12d B = 0 A = 0 C = 0 A 1 + B 1 = C 0 = 0
123 122 bibi1d B = 0 A = 0 C = 0 A 1 + B 1 = C 1 = 0 0 = 0 1 = 0
124 69 123 mtbiri B = 0 A = 0 C = 0 ¬ A 1 + B 1 = C 1 = 0
125 fveq1 p = 1 1 2 1 p 1 = 1 1 2 1 1
126 fvpr1g 1 V 1 V 1 2 1 1 2 1 1 = 1
127 32 32 34 126 mp3an 1 1 2 1 1 = 1
128 125 127 eqtrdi p = 1 1 2 1 p 1 = 1
129 128 oveq2d p = 1 1 2 1 A p 1 = A 1
130 fveq1 p = 1 1 2 1 p 2 = 1 1 2 1 2
131 fvpr2g 2 V 1 V 1 2 1 1 2 1 2 = 1
132 40 32 34 131 mp3an 1 1 2 1 2 = 1
133 130 132 eqtrdi p = 1 1 2 1 p 2 = 1
134 133 oveq2d p = 1 1 2 1 B p 2 = B 1
135 129 134 oveq12d p = 1 1 2 1 A p 1 + B p 2 = A 1 + B 1
136 135 eqeq1d p = 1 1 2 1 A p 1 + B p 2 = C A 1 + B 1 = C
137 128 eqeq1d p = 1 1 2 1 p 1 = 0 1 = 0
138 136 137 bibi12d p = 1 1 2 1 A p 1 + B p 2 = C p 1 = 0 A 1 + B 1 = C 1 = 0
139 138 notbid p = 1 1 2 1 ¬ A p 1 + B p 2 = C p 1 = 0 ¬ A 1 + B 1 = C 1 = 0
140 139 rspcev 1 1 2 1 P ¬ A 1 + B 1 = C 1 = 0 p P ¬ A p 1 + B p 2 = C p 1 = 0
141 110 124 140 sylancr B = 0 A = 0 C = 0 p P ¬ A p 1 + B p 2 = C p 1 = 0
142 141 a1d B = 0 A = 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
143 142 ex B = 0 A = 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
144 105 107 143 syl2anbr ¬ ¬ B = 0 ¬ A 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
145 104 144 jaoi3 ¬ B = 0 ¬ A 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
146 145 orcoms ¬ A 0 ¬ B = 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
147 55 146 sylbi ¬ A 0 B = 0 C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
148 147 com12 C = 0 ¬ A 0 B = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
149 54 148 sylbir ¬ ¬ C = 0 ¬ A 0 B = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
150 149 imp ¬ ¬ C = 0 ¬ A 0 B = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
151 53 150 jaoi3 ¬ C = 0 ¬ A 0 B = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
152 151 orcoms ¬ A 0 B = 0 ¬ C = 0 A B C p P ¬ A p 1 + B p 2 = C p 1 = 0
153 152 com12 A B C ¬ A 0 B = 0 ¬ C = 0 p P ¬ A p 1 + B p 2 = C p 1 = 0
154 3 153 syl5bi A B C ¬ A 0 B = 0 C = 0 p P ¬ A p 1 + B p 2 = C p 1 = 0
155 rexnal p P ¬ A p 1 + B p 2 = C p 1 = 0 ¬ p P A p 1 + B p 2 = C p 1 = 0
156 154 155 syl6ib A B C ¬ A 0 B = 0 C = 0 ¬ p P A p 1 + B p 2 = C p 1 = 0
157 156 con4d A B C p P A p 1 + B p 2 = C p 1 = 0 A 0 B = 0 C = 0
158 df-3an A 0 B = 0 C = 0 A 0 B = 0 C = 0
159 157 158 syl6ibr A B C p P A p 1 + B p 2 = C p 1 = 0 A 0 B = 0 C = 0