Metamath Proof Explorer


Theorem lkrlss

Description: The kernel of a linear functional is a subspace. ( nlelshi analog.) (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lkrlss.f F=LFnlW
lkrlss.k K=LKerW
lkrlss.s S=LSubSpW
Assertion lkrlss WLModGFKGS

Proof

Step Hyp Ref Expression
1 lkrlss.f F=LFnlW
2 lkrlss.k K=LKerW
3 lkrlss.s S=LSubSpW
4 eqid BaseW=BaseW
5 eqid ScalarW=ScalarW
6 eqid 0ScalarW=0ScalarW
7 4 5 6 1 2 lkrval2 WLModGFKG=xBaseW|Gx=0ScalarW
8 ssrab2 xBaseW|Gx=0ScalarWBaseW
9 7 8 eqsstrdi WLModGFKGBaseW
10 eqid 0W=0W
11 4 10 lmod0vcl WLMod0WBaseW
12 11 adantr WLModGF0WBaseW
13 5 6 10 1 lfl0 WLModGFG0W=0ScalarW
14 4 5 6 1 2 ellkr WLModGF0WKG0WBaseWG0W=0ScalarW
15 12 13 14 mpbir2and WLModGF0WKG
16 15 ne0d WLModGFKG
17 simplll WLModGFrBaseScalarWxKGyKGWLMod
18 simplr WLModGFrBaseScalarWxKGyKGrBaseScalarW
19 simpllr WLModGFrBaseScalarWxKGyKGGF
20 simprl WLModGFrBaseScalarWxKGyKGxKG
21 4 1 2 lkrcl WLModGFxKGxBaseW
22 17 19 20 21 syl3anc WLModGFrBaseScalarWxKGyKGxBaseW
23 eqid W=W
24 eqid BaseScalarW=BaseScalarW
25 4 5 23 24 lmodvscl WLModrBaseScalarWxBaseWrWxBaseW
26 17 18 22 25 syl3anc WLModGFrBaseScalarWxKGyKGrWxBaseW
27 simprr WLModGFrBaseScalarWxKGyKGyKG
28 4 1 2 lkrcl WLModGFyKGyBaseW
29 17 19 27 28 syl3anc WLModGFrBaseScalarWxKGyKGyBaseW
30 eqid +W=+W
31 4 30 lmodvacl WLModrWxBaseWyBaseWrWx+WyBaseW
32 17 26 29 31 syl3anc WLModGFrBaseScalarWxKGyKGrWx+WyBaseW
33 eqid +ScalarW=+ScalarW
34 eqid ScalarW=ScalarW
35 4 30 5 23 24 33 34 1 lfli WLModGFrBaseScalarWxBaseWyBaseWGrWx+Wy=rScalarWGx+ScalarWGy
36 17 19 18 22 29 35 syl113anc WLModGFrBaseScalarWxKGyKGGrWx+Wy=rScalarWGx+ScalarWGy
37 5 6 1 2 lkrf0 WLModGFxKGGx=0ScalarW
38 17 19 20 37 syl3anc WLModGFrBaseScalarWxKGyKGGx=0ScalarW
39 38 oveq2d WLModGFrBaseScalarWxKGyKGrScalarWGx=rScalarW0ScalarW
40 5 lmodring WLModScalarWRing
41 17 40 syl WLModGFrBaseScalarWxKGyKGScalarWRing
42 24 34 6 ringrz ScalarWRingrBaseScalarWrScalarW0ScalarW=0ScalarW
43 41 18 42 syl2anc WLModGFrBaseScalarWxKGyKGrScalarW0ScalarW=0ScalarW
44 39 43 eqtrd WLModGFrBaseScalarWxKGyKGrScalarWGx=0ScalarW
45 5 6 1 2 lkrf0 WLModGFyKGGy=0ScalarW
46 17 19 27 45 syl3anc WLModGFrBaseScalarWxKGyKGGy=0ScalarW
47 44 46 oveq12d WLModGFrBaseScalarWxKGyKGrScalarWGx+ScalarWGy=0ScalarW+ScalarW0ScalarW
48 5 lmodfgrp WLModScalarWGrp
49 17 48 syl WLModGFrBaseScalarWxKGyKGScalarWGrp
50 24 6 grpidcl ScalarWGrp0ScalarWBaseScalarW
51 24 33 6 grplid ScalarWGrp0ScalarWBaseScalarW0ScalarW+ScalarW0ScalarW=0ScalarW
52 49 50 51 syl2anc2 WLModGFrBaseScalarWxKGyKG0ScalarW+ScalarW0ScalarW=0ScalarW
53 36 47 52 3eqtrd WLModGFrBaseScalarWxKGyKGGrWx+Wy=0ScalarW
54 4 5 6 1 2 ellkr WLModGFrWx+WyKGrWx+WyBaseWGrWx+Wy=0ScalarW
55 54 ad2antrr WLModGFrBaseScalarWxKGyKGrWx+WyKGrWx+WyBaseWGrWx+Wy=0ScalarW
56 32 53 55 mpbir2and WLModGFrBaseScalarWxKGyKGrWx+WyKG
57 56 ralrimivva WLModGFrBaseScalarWxKGyKGrWx+WyKG
58 57 ralrimiva WLModGFrBaseScalarWxKGyKGrWx+WyKG
59 5 24 4 30 23 3 islss KGSKGBaseWKGrBaseScalarWxKGyKGrWx+WyKG
60 9 16 58 59 syl3anbrc WLModGFKGS