Metamath Proof Explorer


Theorem logtayl2

Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypothesis logtayl2.s S = 1 ball abs 1
Assertion logtayl2 A S seq 1 + k 1 k 1 k A 1 k log A

Proof

Step Hyp Ref Expression
1 logtayl2.s S = 1 ball abs 1
2 nnuz = 1
3 1zzd A S 1
4 neg1cn 1
5 4 a1i A S 1
6 ax-1cn 1
7 1 eleq2i A S A 1 ball abs 1
8 cnxmet abs ∞Met
9 1xr 1 *
10 elbl abs ∞Met 1 1 * A 1 ball abs 1 A 1 abs A < 1
11 8 6 9 10 mp3an A 1 ball abs 1 A 1 abs A < 1
12 7 11 bitri A S A 1 abs A < 1
13 12 simplbi A S A
14 subcl 1 A 1 A
15 6 13 14 sylancr A S 1 A
16 eqid abs = abs
17 16 cnmetdval 1 A 1 abs A = 1 A
18 6 13 17 sylancr A S 1 abs A = 1 A
19 12 simprbi A S 1 abs A < 1
20 18 19 eqbrtrrd A S 1 A < 1
21 logtayl 1 A 1 A < 1 seq 1 + k 1 A k k log 1 1 A
22 15 20 21 syl2anc A S seq 1 + k 1 A k k log 1 1 A
23 nncan 1 A 1 1 A = A
24 6 13 23 sylancr A S 1 1 A = A
25 24 fveq2d A S log 1 1 A = log A
26 25 negeqd A S log 1 1 A = log A
27 22 26 breqtrd A S seq 1 + k 1 A k k log A
28 oveq2 k = n 1 A k = 1 A n
29 id k = n k = n
30 28 29 oveq12d k = n 1 A k k = 1 A n n
31 eqid k 1 A k k = k 1 A k k
32 ovex 1 A n n V
33 30 31 32 fvmpt n k 1 A k k n = 1 A n n
34 33 adantl A S n k 1 A k k n = 1 A n n
35 nnnn0 n n 0
36 expcl 1 A n 0 1 A n
37 15 35 36 syl2an A S n 1 A n
38 nncn n n
39 38 adantl A S n n
40 nnne0 n n 0
41 40 adantl A S n n 0
42 37 39 41 divcld A S n 1 A n n
43 34 42 eqeltrd A S n k 1 A k k n
44 37 39 41 divnegd A S n 1 A n n = 1 A n n
45 42 mulm1d A S n -1 1 A n n = 1 A n n
46 35 adantl A S n n 0
47 expcl 1 n 0 1 n
48 4 46 47 sylancr A S n 1 n
49 subcl A 1 A 1
50 13 6 49 sylancl A S A 1
51 expcl A 1 n 0 A 1 n
52 50 35 51 syl2an A S n A 1 n
53 48 52 mulneg1d A S n 1 n A 1 n = 1 n A 1 n
54 4 a1i A S n 1
55 neg1ne0 1 0
56 55 a1i A S n 1 0
57 nnz n n
58 57 adantl A S n n
59 54 56 58 expm1d A S n 1 n 1 = 1 n 1
60 6 a1i A S n 1
61 ax-1ne0 1 0
62 61 a1i A S n 1 0
63 48 60 62 divneg2d A S n 1 n 1 = 1 n 1
64 48 div1d A S n 1 n 1 = 1 n
65 64 negeqd A S n 1 n 1 = 1 n
66 59 63 65 3eqtr2d A S n 1 n 1 = 1 n
67 66 oveq1d A S n 1 n 1 A 1 n = 1 n A 1 n
68 50 mulm1d A S -1 A 1 = A 1
69 negsubdi2 A 1 A 1 = 1 A
70 13 6 69 sylancl A S A 1 = 1 A
71 68 70 eqtr2d A S 1 A = -1 A 1
72 71 oveq1d A S 1 A n = -1 A 1 n
73 72 adantr A S n 1 A n = -1 A 1 n
74 mulexp 1 A 1 n 0 -1 A 1 n = 1 n A 1 n
75 4 50 35 74 mp3an3an A S n -1 A 1 n = 1 n A 1 n
76 73 75 eqtrd A S n 1 A n = 1 n A 1 n
77 76 negeqd A S n 1 A n = 1 n A 1 n
78 53 67 77 3eqtr4d A S n 1 n 1 A 1 n = 1 A n
79 78 oveq1d A S n 1 n 1 A 1 n n = 1 A n n
80 44 45 79 3eqtr4d A S n -1 1 A n n = 1 n 1 A 1 n n
81 nnm1nn0 n n 1 0
82 81 adantl A S n n 1 0
83 expcl 1 n 1 0 1 n 1
84 4 82 83 sylancr A S n 1 n 1
85 84 52 39 41 div23d A S n 1 n 1 A 1 n n = 1 n 1 n A 1 n
86 80 85 eqtr2d A S n 1 n 1 n A 1 n = -1 1 A n n
87 oveq1 k = n k 1 = n 1
88 87 oveq2d k = n 1 k 1 = 1 n 1
89 88 29 oveq12d k = n 1 k 1 k = 1 n 1 n
90 oveq2 k = n A 1 k = A 1 n
91 89 90 oveq12d k = n 1 k 1 k A 1 k = 1 n 1 n A 1 n
92 eqid k 1 k 1 k A 1 k = k 1 k 1 k A 1 k
93 ovex 1 n 1 n A 1 n V
94 91 92 93 fvmpt n k 1 k 1 k A 1 k n = 1 n 1 n A 1 n
95 94 adantl A S n k 1 k 1 k A 1 k n = 1 n 1 n A 1 n
96 34 oveq2d A S n -1 k 1 A k k n = -1 1 A n n
97 86 95 96 3eqtr4d A S n k 1 k 1 k A 1 k n = -1 k 1 A k k n
98 2 3 5 27 43 97 isermulc2 A S seq 1 + k 1 k 1 k A 1 k -1 log A
99 1 dvlog2lem S −∞ 0
100 99 sseli A S A −∞ 0
101 eqid −∞ 0 = −∞ 0
102 101 logdmn0 A −∞ 0 A 0
103 100 102 syl A S A 0
104 13 103 logcld A S log A
105 104 negcld A S log A
106 105 mulm1d A S -1 log A = log A
107 104 negnegd A S log A = log A
108 106 107 eqtrd A S -1 log A = log A
109 98 108 breqtrd A S seq 1 + k 1 k 1 k A 1 k log A