Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
logtayllem
Next ⟩
logtayl
Metamath Proof Explorer
Ascii
Unicode
Theorem
logtayllem
Description:
Lemma for
logtayl
.
(Contributed by
Mario Carneiro
, 1-Apr-2015)
Ref
Expression
Assertion
logtayllem
⊢
A
∈
ℂ
∧
A
<
1
→
seq
0
+
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
∈
dom
⇝
Proof
Step
Hyp
Ref
Expression
1
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
2
1nn0
⊢
1
∈
ℕ
0
3
2
a1i
⊢
A
∈
ℂ
∧
A
<
1
→
1
∈
ℕ
0
4
oveq2
⊢
n
=
k
→
A
n
=
A
k
5
eqid
⊢
n
∈
ℕ
0
⟼
A
n
=
n
∈
ℕ
0
⟼
A
n
6
ovex
⊢
A
k
∈
V
7
4
5
6
fvmpt
⊢
k
∈
ℕ
0
→
n
∈
ℕ
0
⟼
A
n
k
=
A
k
8
7
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
n
∈
ℕ
0
⟼
A
n
k
=
A
k
9
abscl
⊢
A
∈
ℂ
→
A
∈
ℝ
10
9
adantr
⊢
A
∈
ℂ
∧
A
<
1
→
A
∈
ℝ
11
reexpcl
⊢
A
∈
ℝ
∧
k
∈
ℕ
0
→
A
k
∈
ℝ
12
10
11
sylan
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
A
k
∈
ℝ
13
8
12
eqeltrd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
n
∈
ℕ
0
⟼
A
n
k
∈
ℝ
14
eqeq1
⊢
n
=
k
→
n
=
0
↔
k
=
0
15
oveq2
⊢
n
=
k
→
1
n
=
1
k
16
14
15
ifbieq2d
⊢
n
=
k
→
if
n
=
0
0
1
n
=
if
k
=
0
0
1
k
17
oveq2
⊢
n
=
k
→
A
n
=
A
k
18
16
17
oveq12d
⊢
n
=
k
→
if
n
=
0
0
1
n
A
n
=
if
k
=
0
0
1
k
A
k
19
eqid
⊢
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
=
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
20
ovex
⊢
if
k
=
0
0
1
k
A
k
∈
V
21
18
19
20
fvmpt
⊢
k
∈
ℕ
0
→
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
k
=
if
k
=
0
0
1
k
A
k
22
21
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
k
=
if
k
=
0
0
1
k
A
k
23
0cnd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
∧
k
=
0
→
0
∈
ℂ
24
nn0cn
⊢
k
∈
ℕ
0
→
k
∈
ℂ
25
24
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
k
∈
ℂ
26
neqne
⊢
¬
k
=
0
→
k
≠
0
27
reccl
⊢
k
∈
ℂ
∧
k
≠
0
→
1
k
∈
ℂ
28
25
26
27
syl2an
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
∧
¬
k
=
0
→
1
k
∈
ℂ
29
23
28
ifclda
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
if
k
=
0
0
1
k
∈
ℂ
30
expcl
⊢
A
∈
ℂ
∧
k
∈
ℕ
0
→
A
k
∈
ℂ
31
30
adantlr
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
A
k
∈
ℂ
32
29
31
mulcld
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
if
k
=
0
0
1
k
A
k
∈
ℂ
33
22
32
eqeltrd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
0
→
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
k
∈
ℂ
34
10
recnd
⊢
A
∈
ℂ
∧
A
<
1
→
A
∈
ℂ
35
absidm
⊢
A
∈
ℂ
→
A
=
A
36
35
adantr
⊢
A
∈
ℂ
∧
A
<
1
→
A
=
A
37
simpr
⊢
A
∈
ℂ
∧
A
<
1
→
A
<
1
38
36
37
eqbrtrd
⊢
A
∈
ℂ
∧
A
<
1
→
A
<
1
39
34
38
8
geolim
⊢
A
∈
ℂ
∧
A
<
1
→
seq
0
+
n
∈
ℕ
0
⟼
A
n
⇝
1
1
−
A
40
seqex
⊢
seq
0
+
n
∈
ℕ
0
⟼
A
n
∈
V
41
ovex
⊢
1
1
−
A
∈
V
42
40
41
breldm
⊢
seq
0
+
n
∈
ℕ
0
⟼
A
n
⇝
1
1
−
A
→
seq
0
+
n
∈
ℕ
0
⟼
A
n
∈
dom
⇝
43
39
42
syl
⊢
A
∈
ℂ
∧
A
<
1
→
seq
0
+
n
∈
ℕ
0
⟼
A
n
∈
dom
⇝
44
1red
⊢
A
∈
ℂ
∧
A
<
1
→
1
∈
ℝ
45
elnnuz
⊢
k
∈
ℕ
↔
k
∈
ℤ
≥
1
46
nnrecre
⊢
k
∈
ℕ
→
1
k
∈
ℝ
47
46
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
∈
ℝ
48
47
recnd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
∈
ℂ
49
nnnn0
⊢
k
∈
ℕ
→
k
∈
ℕ
0
50
49
31
sylan2
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
A
k
∈
ℂ
51
48
50
absmuld
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
A
k
=
1
k
A
k
52
nnrp
⊢
k
∈
ℕ
→
k
∈
ℝ
+
53
52
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
k
∈
ℝ
+
54
53
rpreccld
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
∈
ℝ
+
55
54
rpge0d
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
0
≤
1
k
56
47
55
absidd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
=
1
k
57
simpl
⊢
A
∈
ℂ
∧
A
<
1
→
A
∈
ℂ
58
absexp
⊢
A
∈
ℂ
∧
k
∈
ℕ
0
→
A
k
=
A
k
59
57
49
58
syl2an
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
A
k
=
A
k
60
56
59
oveq12d
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
A
k
=
1
k
A
k
61
51
60
eqtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
A
k
=
1
k
A
k
62
1red
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
∈
ℝ
63
49
12
sylan2
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
A
k
∈
ℝ
64
50
absge0d
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
0
≤
A
k
65
64
59
breqtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
0
≤
A
k
66
nnge1
⊢
k
∈
ℕ
→
1
≤
k
67
66
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
≤
k
68
0lt1
⊢
0
<
1
69
68
a1i
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
0
<
1
70
nnre
⊢
k
∈
ℕ
→
k
∈
ℝ
71
70
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
k
∈
ℝ
72
nngt0
⊢
k
∈
ℕ
→
0
<
k
73
72
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
0
<
k
74
lerec
⊢
1
∈
ℝ
∧
0
<
1
∧
k
∈
ℝ
∧
0
<
k
→
1
≤
k
↔
1
k
≤
1
1
75
62
69
71
73
74
syl22anc
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
≤
k
↔
1
k
≤
1
1
76
67
75
mpbid
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
≤
1
1
77
1div1e1
⊢
1
1
=
1
78
76
77
breqtrdi
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
≤
1
79
47
62
63
65
78
lemul1ad
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
A
k
≤
1
A
k
80
61
79
eqbrtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
k
A
k
≤
1
A
k
81
49
22
sylan2
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
k
=
if
k
=
0
0
1
k
A
k
82
nnne0
⊢
k
∈
ℕ
→
k
≠
0
83
82
adantl
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
k
≠
0
84
83
neneqd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
¬
k
=
0
85
84
iffalsed
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
if
k
=
0
0
1
k
=
1
k
86
85
oveq1d
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
if
k
=
0
0
1
k
A
k
=
1
k
A
k
87
81
86
eqtrd
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
k
=
1
k
A
k
88
87
fveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
k
=
1
k
A
k
89
49
8
sylan2
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
n
∈
ℕ
0
⟼
A
n
k
=
A
k
90
89
oveq2d
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
1
n
∈
ℕ
0
⟼
A
n
k
=
1
A
k
91
80
88
90
3brtr4d
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℕ
→
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
k
≤
1
n
∈
ℕ
0
⟼
A
n
k
92
45
91
sylan2br
⊢
A
∈
ℂ
∧
A
<
1
∧
k
∈
ℤ
≥
1
→
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
k
≤
1
n
∈
ℕ
0
⟼
A
n
k
93
1
3
13
33
43
44
92
cvgcmpce
⊢
A
∈
ℂ
∧
A
<
1
→
seq
0
+
n
∈
ℕ
0
⟼
if
n
=
0
0
1
n
A
n
∈
dom
⇝