Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ltexprlem.1 | |
|
Assertion | ltexprlem7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltexprlem.1 | |
|
2 | 1 | ltexprlem5 | |
3 | ltaddpr | |
|
4 | addclpr | |
|
5 | ltprord | |
|
6 | 4 5 | syldan | |
7 | 3 6 | mpbid | |
8 | 7 | pssssd | |
9 | 8 | sseld | |
10 | 9 | 2a1d | |
11 | 10 | com4r | |
12 | 11 | expd | |
13 | prnmadd | |
|
14 | 13 | ex | |
15 | elprnq | |
|
16 | addnqf | |
|
17 | 16 | fdmi | |
18 | 0nnq | |
|
19 | 17 18 | ndmovrcl | |
20 | 15 19 | syl | |
21 | 20 | simpld | |
22 | vex | |
|
23 | 22 | prlem934 | |
24 | 23 | adantr | |
25 | prub | |
|
26 | ltexnq | |
|
27 | 26 | adantl | |
28 | 25 27 | sylibd | |
29 | 28 | ex | |
30 | 29 | ad2ant2r | |
31 | vex | |
|
32 | vex | |
|
33 | addcomnq | |
|
34 | addassnq | |
|
35 | 31 22 32 33 34 | caov32 | |
36 | oveq1 | |
|
37 | 35 36 | eqtrid | |
38 | 37 | eleq1d | |
39 | 38 | biimpar | |
40 | ovex | |
|
41 | eleq1 | |
|
42 | 41 | notbid | |
43 | oveq1 | |
|
44 | 43 | eleq1d | |
45 | 42 44 | anbi12d | |
46 | 40 45 | spcev | |
47 | 1 | eqabri | |
48 | 46 47 | sylibr | |
49 | 39 48 | sylan2 | |
50 | df-plp | |
|
51 | addclnq | |
|
52 | 50 51 | genpprecl | |
53 | 49 52 | sylan2i | |
54 | 53 | exp4d | |
55 | 54 | imp42 | |
56 | eleq1 | |
|
57 | 56 | ad2antrl | |
58 | 55 57 | mpbid | |
59 | 58 | exp32 | |
60 | 59 | exlimdv | |
61 | 30 60 | syl6d | |
62 | 24 61 | rexlimddv | |
63 | 62 | com14 | |
64 | 63 | adantl | |
65 | 21 64 | mpd | |
66 | 65 | ex | |
67 | 66 | exlimdv | |
68 | 14 67 | syld | |
69 | 68 | com4t | |
70 | 69 | expd | |
71 | 12 70 | pm2.61i | |
72 | 2 71 | syl5 | |
73 | 72 | expd | |
74 | 73 | com34 | |
75 | 74 | pm2.43d | |
76 | 75 | imp31 | |
77 | 76 | ssrdv | |