Metamath Proof Explorer


Theorem ltexprlem7

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 C=x|y¬yAy+𝑸xB
Assertion ltexprlem7 A𝑷B𝑷ABBA+𝑷C

Proof

Step Hyp Ref Expression
1 ltexprlem.1 C=x|y¬yAy+𝑸xB
2 1 ltexprlem5 B𝑷ABC𝑷
3 ltaddpr A𝑷C𝑷A<𝑷A+𝑷C
4 addclpr A𝑷C𝑷A+𝑷C𝑷
5 ltprord A𝑷A+𝑷C𝑷A<𝑷A+𝑷CAA+𝑷C
6 4 5 syldan A𝑷C𝑷A<𝑷A+𝑷CAA+𝑷C
7 3 6 mpbid A𝑷C𝑷AA+𝑷C
8 7 pssssd A𝑷C𝑷AA+𝑷C
9 8 sseld A𝑷C𝑷wAwA+𝑷C
10 9 2a1d A𝑷C𝑷B𝑷wBwAwA+𝑷C
11 10 com4r wAA𝑷C𝑷B𝑷wBwA+𝑷C
12 11 expd wAA𝑷C𝑷B𝑷wBwA+𝑷C
13 prnmadd B𝑷wBvw+𝑸vB
14 13 ex B𝑷wBvw+𝑸vB
15 elprnq B𝑷w+𝑸vBw+𝑸v𝑸
16 addnqf +𝑸:𝑸×𝑸𝑸
17 16 fdmi dom+𝑸=𝑸×𝑸
18 0nnq ¬𝑸
19 17 18 ndmovrcl w+𝑸v𝑸w𝑸v𝑸
20 15 19 syl B𝑷w+𝑸vBw𝑸v𝑸
21 20 simpld B𝑷w+𝑸vBw𝑸
22 vex vV
23 22 prlem934 A𝑷zA¬z+𝑸vA
24 23 adantr A𝑷C𝑷zA¬z+𝑸vA
25 prub A𝑷zAw𝑸¬wAz<𝑸w
26 ltexnq w𝑸z<𝑸wxz+𝑸x=w
27 26 adantl A𝑷zAw𝑸z<𝑸wxz+𝑸x=w
28 25 27 sylibd A𝑷zAw𝑸¬wAxz+𝑸x=w
29 28 ex A𝑷zAw𝑸¬wAxz+𝑸x=w
30 29 ad2ant2r A𝑷C𝑷zA¬z+𝑸vAw𝑸¬wAxz+𝑸x=w
31 vex zV
32 vex xV
33 addcomnq f+𝑸g=g+𝑸f
34 addassnq f+𝑸g+𝑸h=f+𝑸g+𝑸h
35 31 22 32 33 34 caov32 z+𝑸v+𝑸x=z+𝑸x+𝑸v
36 oveq1 z+𝑸x=wz+𝑸x+𝑸v=w+𝑸v
37 35 36 eqtrid z+𝑸x=wz+𝑸v+𝑸x=w+𝑸v
38 37 eleq1d z+𝑸x=wz+𝑸v+𝑸xBw+𝑸vB
39 38 biimpar z+𝑸x=ww+𝑸vBz+𝑸v+𝑸xB
40 ovex z+𝑸vV
41 eleq1 y=z+𝑸vyAz+𝑸vA
42 41 notbid y=z+𝑸v¬yA¬z+𝑸vA
43 oveq1 y=z+𝑸vy+𝑸x=z+𝑸v+𝑸x
44 43 eleq1d y=z+𝑸vy+𝑸xBz+𝑸v+𝑸xB
45 42 44 anbi12d y=z+𝑸v¬yAy+𝑸xB¬z+𝑸vAz+𝑸v+𝑸xB
46 40 45 spcev ¬z+𝑸vAz+𝑸v+𝑸xBy¬yAy+𝑸xB
47 1 eqabri xCy¬yAy+𝑸xB
48 46 47 sylibr ¬z+𝑸vAz+𝑸v+𝑸xBxC
49 39 48 sylan2 ¬z+𝑸vAz+𝑸x=ww+𝑸vBxC
50 df-plp +𝑷=x𝑷,w𝑷z|fxvwz=f+𝑸v
51 addclnq f𝑸v𝑸f+𝑸v𝑸
52 50 51 genpprecl A𝑷C𝑷zAxCz+𝑸xA+𝑷C
53 49 52 sylan2i A𝑷C𝑷zA¬z+𝑸vAz+𝑸x=ww+𝑸vBz+𝑸xA+𝑷C
54 53 exp4d A𝑷C𝑷zA¬z+𝑸vAz+𝑸x=ww+𝑸vBz+𝑸xA+𝑷C
55 54 imp42 A𝑷C𝑷zA¬z+𝑸vAz+𝑸x=ww+𝑸vBz+𝑸xA+𝑷C
56 eleq1 z+𝑸x=wz+𝑸xA+𝑷CwA+𝑷C
57 56 ad2antrl A𝑷C𝑷zA¬z+𝑸vAz+𝑸x=ww+𝑸vBz+𝑸xA+𝑷CwA+𝑷C
58 55 57 mpbid A𝑷C𝑷zA¬z+𝑸vAz+𝑸x=ww+𝑸vBwA+𝑷C
59 58 exp32 A𝑷C𝑷zA¬z+𝑸vAz+𝑸x=ww+𝑸vBwA+𝑷C
60 59 exlimdv A𝑷C𝑷zA¬z+𝑸vAxz+𝑸x=ww+𝑸vBwA+𝑷C
61 30 60 syl6d A𝑷C𝑷zA¬z+𝑸vAw𝑸¬wAw+𝑸vBwA+𝑷C
62 24 61 rexlimddv A𝑷C𝑷w𝑸¬wAw+𝑸vBwA+𝑷C
63 62 com14 w+𝑸vBw𝑸¬wAA𝑷C𝑷wA+𝑷C
64 63 adantl B𝑷w+𝑸vBw𝑸¬wAA𝑷C𝑷wA+𝑷C
65 21 64 mpd B𝑷w+𝑸vB¬wAA𝑷C𝑷wA+𝑷C
66 65 ex B𝑷w+𝑸vB¬wAA𝑷C𝑷wA+𝑷C
67 66 exlimdv B𝑷vw+𝑸vB¬wAA𝑷C𝑷wA+𝑷C
68 14 67 syld B𝑷wB¬wAA𝑷C𝑷wA+𝑷C
69 68 com4t ¬wAA𝑷C𝑷B𝑷wBwA+𝑷C
70 69 expd ¬wAA𝑷C𝑷B𝑷wBwA+𝑷C
71 12 70 pm2.61i A𝑷C𝑷B𝑷wBwA+𝑷C
72 2 71 syl5 A𝑷B𝑷ABB𝑷wBwA+𝑷C
73 72 expd A𝑷B𝑷ABB𝑷wBwA+𝑷C
74 73 com34 A𝑷B𝑷B𝑷ABwBwA+𝑷C
75 74 pm2.43d A𝑷B𝑷ABwBwA+𝑷C
76 75 imp31 A𝑷B𝑷ABwBwA+𝑷C
77 76 ssrdv A𝑷B𝑷ABBA+𝑷C