Step |
Hyp |
Ref |
Expression |
1 |
|
m2detleib.n |
|
2 |
|
m2detleib.d |
|
3 |
|
m2detleib.a |
|
4 |
|
m2detleib.b |
|
5 |
|
m2detleib.m |
|
6 |
|
m2detleib.t |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
2 3 4 7 8 9 6 10
|
mdetleib1 |
|
12 |
11
|
adantl |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
ringcmn |
|
16 |
15
|
adantr |
|
17 |
|
prfi |
|
18 |
1 17
|
eqeltri |
|
19 |
|
eqid |
|
20 |
19 7
|
symgbasfi |
|
21 |
18 20
|
ax-mp |
|
22 |
21
|
a1i |
|
23 |
|
simpl |
|
24 |
23
|
adantr |
|
25 |
7 9 8
|
zrhpsgnelbas |
|
26 |
18 25
|
mp3an2 |
|
27 |
26
|
adantlr |
|
28 |
|
simpr |
|
29 |
|
simpr |
|
30 |
29
|
adantr |
|
31 |
1 7 3 4 10
|
m2detleiblem2 |
|
32 |
24 28 30 31
|
syl3anc |
|
33 |
13 6
|
ringcl |
|
34 |
24 27 32 33
|
syl3anc |
|
35 |
|
opex |
|
36 |
|
opex |
|
37 |
35 36
|
pm3.2i |
|
38 |
|
opex |
|
39 |
|
opex |
|
40 |
38 39
|
pm3.2i |
|
41 |
37 40
|
pm3.2i |
|
42 |
|
1ne2 |
|
43 |
42
|
olci |
|
44 |
|
1ex |
|
45 |
44 44
|
opthne |
|
46 |
43 45
|
mpbir |
|
47 |
42
|
orci |
|
48 |
44 44
|
opthne |
|
49 |
47 48
|
mpbir |
|
50 |
46 49
|
pm3.2i |
|
51 |
50
|
orci |
|
52 |
41 51
|
pm3.2i |
|
53 |
52
|
a1i |
|
54 |
|
prneimg |
|
55 |
54
|
imp |
|
56 |
|
disjsn2 |
|
57 |
53 55 56
|
3syl |
|
58 |
|
2nn |
|
59 |
19 7 1
|
symg2bas |
|
60 |
44 58 59
|
mp2an |
|
61 |
|
df-pr |
|
62 |
60 61
|
eqtri |
|
63 |
62
|
a1i |
|
64 |
13 14 16 22 34 57 63
|
gsummptfidmsplit |
|
65 |
|
ringmnd |
|
66 |
65
|
adantr |
|
67 |
|
prex |
|
68 |
67
|
a1i |
|
69 |
67
|
prid1 |
|
70 |
69 60
|
eleqtrri |
|
71 |
70
|
a1i |
|
72 |
7 9 8
|
zrhpsgnelbas |
|
73 |
18 72
|
mp3an2 |
|
74 |
71 73
|
sylan2 |
|
75 |
1 7 3 4 10
|
m2detleiblem2 |
|
76 |
70 75
|
mp3an2 |
|
77 |
13 6
|
ringcl |
|
78 |
23 74 76 77
|
syl3anc |
|
79 |
|
2fveq3 |
|
80 |
|
fveq1 |
|
81 |
80
|
oveq1d |
|
82 |
81
|
mpteq2dv |
|
83 |
82
|
oveq2d |
|
84 |
79 83
|
oveq12d |
|
85 |
13 84
|
gsumsn |
|
86 |
66 68 78 85
|
syl3anc |
|
87 |
|
prex |
|
88 |
87
|
a1i |
|
89 |
87
|
prid2 |
|
90 |
89 60
|
eleqtrri |
|
91 |
90
|
a1i |
|
92 |
7 9 8
|
zrhpsgnelbas |
|
93 |
18 92
|
mp3an2 |
|
94 |
91 93
|
sylan2 |
|
95 |
1 7 3 4 10
|
m2detleiblem2 |
|
96 |
90 95
|
mp3an2 |
|
97 |
13 6
|
ringcl |
|
98 |
23 94 96 97
|
syl3anc |
|
99 |
|
2fveq3 |
|
100 |
|
fveq1 |
|
101 |
100
|
oveq1d |
|
102 |
101
|
mpteq2dv |
|
103 |
102
|
oveq2d |
|
104 |
99 103
|
oveq12d |
|
105 |
13 104
|
gsumsn |
|
106 |
66 88 98 105
|
syl3anc |
|
107 |
86 106
|
oveq12d |
|
108 |
|
eqidd |
|
109 |
|
eqid |
|
110 |
1 7 8 9 109
|
m2detleiblem5 |
|
111 |
108 110
|
sylan2 |
|
112 |
|
eqidd |
|
113 |
10 6
|
mgpplusg |
|
114 |
1 7 3 4 10 113
|
m2detleiblem3 |
|
115 |
23 112 29 114
|
syl3anc |
|
116 |
111 115
|
oveq12d |
|
117 |
44
|
prid1 |
|
118 |
117 1
|
eleqtrri |
|
119 |
118
|
a1i |
|
120 |
4
|
eleq2i |
|
121 |
120
|
biimpi |
|
122 |
121
|
adantl |
|
123 |
3 13
|
matecl |
|
124 |
119 119 122 123
|
syl3anc |
|
125 |
|
prid2g |
|
126 |
58 125
|
ax-mp |
|
127 |
126 1
|
eleqtrri |
|
128 |
127
|
a1i |
|
129 |
3 13
|
matecl |
|
130 |
128 128 122 129
|
syl3anc |
|
131 |
13 6
|
ringcl |
|
132 |
23 124 130 131
|
syl3anc |
|
133 |
13 6 109
|
ringlidm |
|
134 |
132 133
|
syldan |
|
135 |
116 134
|
eqtrd |
|
136 |
|
eqidd |
|
137 |
|
eqid |
|
138 |
1 7 8 9 109 137
|
m2detleiblem6 |
|
139 |
136 138
|
sylan2 |
|
140 |
|
eqidd |
|
141 |
1 7 3 4 10 113
|
m2detleiblem4 |
|
142 |
23 140 29 141
|
syl3anc |
|
143 |
139 142
|
oveq12d |
|
144 |
135 143
|
oveq12d |
|
145 |
3 13
|
matecl |
|
146 |
128 119 122 145
|
syl3anc |
|
147 |
3 13
|
matecl |
|
148 |
119 128 122 147
|
syl3anc |
|
149 |
13 6
|
ringcl |
|
150 |
23 146 148 149
|
syl3anc |
|
151 |
1 7 8 9 109 137 6 5
|
m2detleiblem7 |
|
152 |
23 132 150 151
|
syl3anc |
|
153 |
107 144 152
|
3eqtrd |
|
154 |
12 64 153
|
3eqtrd |
|