Metamath Proof Explorer


Theorem m2detleib

Description: Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018) (Revised by AV, 26-Dec-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses m2detleib.n N=12
m2detleib.d D=NmaDetR
m2detleib.a A=NMatR
m2detleib.b B=BaseA
m2detleib.m -˙=-R
m2detleib.t ·˙=R
Assertion m2detleib RRingMBDM=1M1·˙2M2-˙2M1·˙1M2

Proof

Step Hyp Ref Expression
1 m2detleib.n N=12
2 m2detleib.d D=NmaDetR
3 m2detleib.a A=NMatR
4 m2detleib.b B=BaseA
5 m2detleib.m -˙=-R
6 m2detleib.t ·˙=R
7 eqid BaseSymGrpN=BaseSymGrpN
8 eqid ℤRHomR=ℤRHomR
9 eqid pmSgnN=pmSgnN
10 eqid mulGrpR=mulGrpR
11 2 3 4 7 8 9 6 10 mdetleib1 MBDM=RkBaseSymGrpNℤRHomRpmSgnNk·˙mulGrpRnNknMn
12 11 adantl RRingMBDM=RkBaseSymGrpNℤRHomRpmSgnNk·˙mulGrpRnNknMn
13 eqid BaseR=BaseR
14 eqid +R=+R
15 ringcmn RRingRCMnd
16 15 adantr RRingMBRCMnd
17 prfi 12Fin
18 1 17 eqeltri NFin
19 eqid SymGrpN=SymGrpN
20 19 7 symgbasfi NFinBaseSymGrpNFin
21 18 20 ax-mp BaseSymGrpNFin
22 21 a1i RRingMBBaseSymGrpNFin
23 simpl RRingMBRRing
24 23 adantr RRingMBkBaseSymGrpNRRing
25 7 9 8 zrhpsgnelbas RRingNFinkBaseSymGrpNℤRHomRpmSgnNkBaseR
26 18 25 mp3an2 RRingkBaseSymGrpNℤRHomRpmSgnNkBaseR
27 26 adantlr RRingMBkBaseSymGrpNℤRHomRpmSgnNkBaseR
28 simpr RRingMBkBaseSymGrpNkBaseSymGrpN
29 simpr RRingMBMB
30 29 adantr RRingMBkBaseSymGrpNMB
31 1 7 3 4 10 m2detleiblem2 RRingkBaseSymGrpNMBmulGrpRnNknMnBaseR
32 24 28 30 31 syl3anc RRingMBkBaseSymGrpNmulGrpRnNknMnBaseR
33 13 6 ringcl RRingℤRHomRpmSgnNkBaseRmulGrpRnNknMnBaseRℤRHomRpmSgnNk·˙mulGrpRnNknMnBaseR
34 24 27 32 33 syl3anc RRingMBkBaseSymGrpNℤRHomRpmSgnNk·˙mulGrpRnNknMnBaseR
35 opex 11V
36 opex 22V
37 35 36 pm3.2i 11V22V
38 opex 12V
39 opex 21V
40 38 39 pm3.2i 12V21V
41 37 40 pm3.2i 11V22V12V21V
42 1ne2 12
43 42 olci 1112
44 1ex 1V
45 44 44 opthne 11121112
46 43 45 mpbir 1112
47 42 orci 1211
48 44 44 opthne 11211211
49 47 48 mpbir 1121
50 46 49 pm3.2i 11121121
51 50 orci 1112112122122221
52 41 51 pm3.2i 11V22V12V21V1112112122122221
53 52 a1i RRingMB11V22V12V21V1112112122122221
54 prneimg 11V22V12V21V111211212212222111221221
55 54 imp 11V22V12V21V111211212212222111221221
56 disjsn2 1122122111221221=
57 53 55 56 3syl RRingMB11221221=
58 2nn 2
59 19 7 1 symg2bas 1V2BaseSymGrpN=11221221
60 44 58 59 mp2an BaseSymGrpN=11221221
61 df-pr 11221221=11221221
62 60 61 eqtri BaseSymGrpN=11221221
63 62 a1i RRingMBBaseSymGrpN=11221221
64 13 14 16 22 34 57 63 gsummptfidmsplit RRingMBRkBaseSymGrpNℤRHomRpmSgnNk·˙mulGrpRnNknMn=Rk1122ℤRHomRpmSgnNk·˙mulGrpRnNknMn+RRk1221ℤRHomRpmSgnNk·˙mulGrpRnNknMn
65 ringmnd RRingRMnd
66 65 adantr RRingMBRMnd
67 prex 1122V
68 67 a1i RRingMB1122V
69 67 prid1 112211221221
70 69 60 eleqtrri 1122BaseSymGrpN
71 70 a1i MB1122BaseSymGrpN
72 7 9 8 zrhpsgnelbas RRingNFin1122BaseSymGrpNℤRHomRpmSgnN1122BaseR
73 18 72 mp3an2 RRing1122BaseSymGrpNℤRHomRpmSgnN1122BaseR
74 71 73 sylan2 RRingMBℤRHomRpmSgnN1122BaseR
75 1 7 3 4 10 m2detleiblem2 RRing1122BaseSymGrpNMBmulGrpRnN1122nMnBaseR
76 70 75 mp3an2 RRingMBmulGrpRnN1122nMnBaseR
77 13 6 ringcl RRingℤRHomRpmSgnN1122BaseRmulGrpRnN1122nMnBaseRℤRHomRpmSgnN1122·˙mulGrpRnN1122nMnBaseR
78 23 74 76 77 syl3anc RRingMBℤRHomRpmSgnN1122·˙mulGrpRnN1122nMnBaseR
79 2fveq3 k=1122ℤRHomRpmSgnNk=ℤRHomRpmSgnN1122
80 fveq1 k=1122kn=1122n
81 80 oveq1d k=1122knMn=1122nMn
82 81 mpteq2dv k=1122nNknMn=nN1122nMn
83 82 oveq2d k=1122mulGrpRnNknMn=mulGrpRnN1122nMn
84 79 83 oveq12d k=1122ℤRHomRpmSgnNk·˙mulGrpRnNknMn=ℤRHomRpmSgnN1122·˙mulGrpRnN1122nMn
85 13 84 gsumsn RMnd1122VℤRHomRpmSgnN1122·˙mulGrpRnN1122nMnBaseRRk1122ℤRHomRpmSgnNk·˙mulGrpRnNknMn=ℤRHomRpmSgnN1122·˙mulGrpRnN1122nMn
86 66 68 78 85 syl3anc RRingMBRk1122ℤRHomRpmSgnNk·˙mulGrpRnNknMn=ℤRHomRpmSgnN1122·˙mulGrpRnN1122nMn
87 prex 1221V
88 87 a1i RRingMB1221V
89 87 prid2 122111221221
90 89 60 eleqtrri 1221BaseSymGrpN
91 90 a1i MB1221BaseSymGrpN
92 7 9 8 zrhpsgnelbas RRingNFin1221BaseSymGrpNℤRHomRpmSgnN1221BaseR
93 18 92 mp3an2 RRing1221BaseSymGrpNℤRHomRpmSgnN1221BaseR
94 91 93 sylan2 RRingMBℤRHomRpmSgnN1221BaseR
95 1 7 3 4 10 m2detleiblem2 RRing1221BaseSymGrpNMBmulGrpRnN1221nMnBaseR
96 90 95 mp3an2 RRingMBmulGrpRnN1221nMnBaseR
97 13 6 ringcl RRingℤRHomRpmSgnN1221BaseRmulGrpRnN1221nMnBaseRℤRHomRpmSgnN1221·˙mulGrpRnN1221nMnBaseR
98 23 94 96 97 syl3anc RRingMBℤRHomRpmSgnN1221·˙mulGrpRnN1221nMnBaseR
99 2fveq3 k=1221ℤRHomRpmSgnNk=ℤRHomRpmSgnN1221
100 fveq1 k=1221kn=1221n
101 100 oveq1d k=1221knMn=1221nMn
102 101 mpteq2dv k=1221nNknMn=nN1221nMn
103 102 oveq2d k=1221mulGrpRnNknMn=mulGrpRnN1221nMn
104 99 103 oveq12d k=1221ℤRHomRpmSgnNk·˙mulGrpRnNknMn=ℤRHomRpmSgnN1221·˙mulGrpRnN1221nMn
105 13 104 gsumsn RMnd1221VℤRHomRpmSgnN1221·˙mulGrpRnN1221nMnBaseRRk1221ℤRHomRpmSgnNk·˙mulGrpRnNknMn=ℤRHomRpmSgnN1221·˙mulGrpRnN1221nMn
106 66 88 98 105 syl3anc RRingMBRk1221ℤRHomRpmSgnNk·˙mulGrpRnNknMn=ℤRHomRpmSgnN1221·˙mulGrpRnN1221nMn
107 86 106 oveq12d RRingMBRk1122ℤRHomRpmSgnNk·˙mulGrpRnNknMn+RRk1221ℤRHomRpmSgnNk·˙mulGrpRnNknMn=ℤRHomRpmSgnN1122·˙mulGrpRnN1122nMn+RℤRHomRpmSgnN1221·˙mulGrpRnN1221nMn
108 eqidd MB1122=1122
109 eqid 1R=1R
110 1 7 8 9 109 m2detleiblem5 RRing1122=1122ℤRHomRpmSgnN1122=1R
111 108 110 sylan2 RRingMBℤRHomRpmSgnN1122=1R
112 eqidd RRingMB1122=1122
113 10 6 mgpplusg ·˙=+mulGrpR
114 1 7 3 4 10 113 m2detleiblem3 RRing1122=1122MBmulGrpRnN1122nMn=1M1·˙2M2
115 23 112 29 114 syl3anc RRingMBmulGrpRnN1122nMn=1M1·˙2M2
116 111 115 oveq12d RRingMBℤRHomRpmSgnN1122·˙mulGrpRnN1122nMn=1R·˙1M1·˙2M2
117 44 prid1 112
118 117 1 eleqtrri 1N
119 118 a1i RRingMB1N
120 4 eleq2i MBMBaseA
121 120 biimpi MBMBaseA
122 121 adantl RRingMBMBaseA
123 3 13 matecl 1N1NMBaseA1M1BaseR
124 119 119 122 123 syl3anc RRingMB1M1BaseR
125 prid2g 2212
126 58 125 ax-mp 212
127 126 1 eleqtrri 2N
128 127 a1i RRingMB2N
129 3 13 matecl 2N2NMBaseA2M2BaseR
130 128 128 122 129 syl3anc RRingMB2M2BaseR
131 13 6 ringcl RRing1M1BaseR2M2BaseR1M1·˙2M2BaseR
132 23 124 130 131 syl3anc RRingMB1M1·˙2M2BaseR
133 13 6 109 ringlidm RRing1M1·˙2M2BaseR1R·˙1M1·˙2M2=1M1·˙2M2
134 132 133 syldan RRingMB1R·˙1M1·˙2M2=1M1·˙2M2
135 116 134 eqtrd RRingMBℤRHomRpmSgnN1122·˙mulGrpRnN1122nMn=1M1·˙2M2
136 eqidd MB1221=1221
137 eqid invgR=invgR
138 1 7 8 9 109 137 m2detleiblem6 RRing1221=1221ℤRHomRpmSgnN1221=invgR1R
139 136 138 sylan2 RRingMBℤRHomRpmSgnN1221=invgR1R
140 eqidd RRingMB1221=1221
141 1 7 3 4 10 113 m2detleiblem4 RRing1221=1221MBmulGrpRnN1221nMn=2M1·˙1M2
142 23 140 29 141 syl3anc RRingMBmulGrpRnN1221nMn=2M1·˙1M2
143 139 142 oveq12d RRingMBℤRHomRpmSgnN1221·˙mulGrpRnN1221nMn=invgR1R·˙2M1·˙1M2
144 135 143 oveq12d RRingMBℤRHomRpmSgnN1122·˙mulGrpRnN1122nMn+RℤRHomRpmSgnN1221·˙mulGrpRnN1221nMn=1M1·˙2M2+RinvgR1R·˙2M1·˙1M2
145 3 13 matecl 2N1NMBaseA2M1BaseR
146 128 119 122 145 syl3anc RRingMB2M1BaseR
147 3 13 matecl 1N2NMBaseA1M2BaseR
148 119 128 122 147 syl3anc RRingMB1M2BaseR
149 13 6 ringcl RRing2M1BaseR1M2BaseR2M1·˙1M2BaseR
150 23 146 148 149 syl3anc RRingMB2M1·˙1M2BaseR
151 1 7 8 9 109 137 6 5 m2detleiblem7 RRing1M1·˙2M2BaseR2M1·˙1M2BaseR1M1·˙2M2+RinvgR1R·˙2M1·˙1M2=1M1·˙2M2-˙2M1·˙1M2
152 23 132 150 151 syl3anc RRingMB1M1·˙2M2+RinvgR1R·˙2M1·˙1M2=1M1·˙2M2-˙2M1·˙1M2
153 107 144 152 3eqtrd RRingMBRk1122ℤRHomRpmSgnNk·˙mulGrpRnNknMn+RRk1221ℤRHomRpmSgnNk·˙mulGrpRnNknMn=1M1·˙2M2-˙2M1·˙1M2
154 12 64 153 3eqtrd RRingMBDM=1M1·˙2M2-˙2M1·˙1M2