Metamath Proof Explorer


Theorem mamudi

Description: Matrix multiplication distributes over addition on the left. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mamucl.b B=BaseR
mamucl.r φRRing
mamudi.f F=RmaMulMNO
mamudi.m φMFin
mamudi.n φNFin
mamudi.o φOFin
mamudi.p +˙=+R
mamudi.x φXBM×N
mamudi.y φYBM×N
mamudi.z φZBN×O
Assertion mamudi φX+˙fYFZ=XFZ+˙fYFZ

Proof

Step Hyp Ref Expression
1 mamucl.b B=BaseR
2 mamucl.r φRRing
3 mamudi.f F=RmaMulMNO
4 mamudi.m φMFin
5 mamudi.n φNFin
6 mamudi.o φOFin
7 mamudi.p +˙=+R
8 mamudi.x φXBM×N
9 mamudi.y φYBM×N
10 mamudi.z φZBN×O
11 ringcmn RRingRCMnd
12 2 11 syl φRCMnd
13 12 adantr φiMkORCMnd
14 5 adantr φiMkONFin
15 2 ad2antrr φiMkOjNRRing
16 elmapi XBM×NX:M×NB
17 8 16 syl φX:M×NB
18 17 ad2antrr φiMkOjNX:M×NB
19 simplrl φiMkOjNiM
20 simpr φiMkOjNjN
21 18 19 20 fovcdmd φiMkOjNiXjB
22 elmapi ZBN×OZ:N×OB
23 10 22 syl φZ:N×OB
24 23 ad2antrr φiMkOjNZ:N×OB
25 simplrr φiMkOjNkO
26 24 20 25 fovcdmd φiMkOjNjZkB
27 eqid R=R
28 1 27 ringcl RRingiXjBjZkBiXjRjZkB
29 15 21 26 28 syl3anc φiMkOjNiXjRjZkB
30 elmapi YBM×NY:M×NB
31 9 30 syl φY:M×NB
32 31 ad2antrr φiMkOjNY:M×NB
33 32 19 20 fovcdmd φiMkOjNiYjB
34 1 27 ringcl RRingiYjBjZkBiYjRjZkB
35 15 33 26 34 syl3anc φiMkOjNiYjRjZkB
36 eqid jNiXjRjZk=jNiXjRjZk
37 eqid jNiYjRjZk=jNiYjRjZk
38 1 7 13 14 29 35 36 37 gsummptfidmadd2 φiMkORjNiXjRjZk+˙fjNiYjRjZk=RjNiXjRjZk+˙RjNiYjRjZk
39 8 ad2antrr φiMkOjNXBM×N
40 ffn X:M×NBXFnM×N
41 39 16 40 3syl φiMkOjNXFnM×N
42 9 ad2antrr φiMkOjNYBM×N
43 ffn Y:M×NBYFnM×N
44 42 30 43 3syl φiMkOjNYFnM×N
45 xpfi MFinNFinM×NFin
46 4 5 45 syl2anc φM×NFin
47 46 ad2antrr φiMkOjNM×NFin
48 opelxpi iMjNijM×N
49 48 adantlr iMkOjNijM×N
50 49 adantll φiMkOjNijM×N
51 fnfvof XFnM×NYFnM×NM×NFinijM×NX+˙fYij=Xij+˙Yij
52 41 44 47 50 51 syl22anc φiMkOjNX+˙fYij=Xij+˙Yij
53 df-ov iX+˙fYj=X+˙fYij
54 df-ov iXj=Xij
55 df-ov iYj=Yij
56 54 55 oveq12i iXj+˙iYj=Xij+˙Yij
57 52 53 56 3eqtr4g φiMkOjNiX+˙fYj=iXj+˙iYj
58 57 oveq1d φiMkOjNiX+˙fYjRjZk=iXj+˙iYjRjZk
59 1 7 27 ringdir RRingiXjBiYjBjZkBiXj+˙iYjRjZk=iXjRjZk+˙iYjRjZk
60 15 21 33 26 59 syl13anc φiMkOjNiXj+˙iYjRjZk=iXjRjZk+˙iYjRjZk
61 58 60 eqtrd φiMkOjNiX+˙fYjRjZk=iXjRjZk+˙iYjRjZk
62 61 mpteq2dva φiMkOjNiX+˙fYjRjZk=jNiXjRjZk+˙iYjRjZk
63 eqidd φiMkOjNiXjRjZk=jNiXjRjZk
64 eqidd φiMkOjNiYjRjZk=jNiYjRjZk
65 14 29 35 63 64 offval2 φiMkOjNiXjRjZk+˙fjNiYjRjZk=jNiXjRjZk+˙iYjRjZk
66 62 65 eqtr4d φiMkOjNiX+˙fYjRjZk=jNiXjRjZk+˙fjNiYjRjZk
67 66 oveq2d φiMkORjNiX+˙fYjRjZk=RjNiXjRjZk+˙fjNiYjRjZk
68 2 adantr φiMkORRing
69 4 adantr φiMkOMFin
70 6 adantr φiMkOOFin
71 8 adantr φiMkOXBM×N
72 10 adantr φiMkOZBN×O
73 simprl φiMkOiM
74 simprr φiMkOkO
75 3 1 27 68 69 14 70 71 72 73 74 mamufv φiMkOiXFZk=RjNiXjRjZk
76 9 adantr φiMkOYBM×N
77 3 1 27 68 69 14 70 76 72 73 74 mamufv φiMkOiYFZk=RjNiYjRjZk
78 75 77 oveq12d φiMkOiXFZk+˙iYFZk=RjNiXjRjZk+˙RjNiYjRjZk
79 38 67 78 3eqtr4d φiMkORjNiX+˙fYjRjZk=iXFZk+˙iYFZk
80 ringmnd RRingRMnd
81 2 80 syl φRMnd
82 1 7 mndvcl RMndXBM×NYBM×NX+˙fYBM×N
83 81 8 9 82 syl3anc φX+˙fYBM×N
84 83 adantr φiMkOX+˙fYBM×N
85 3 1 27 68 69 14 70 84 72 73 74 mamufv φiMkOiX+˙fYFZk=RjNiX+˙fYjRjZk
86 1 2 3 4 5 6 8 10 mamucl φXFZBM×O
87 elmapi XFZBM×OXFZ:M×OB
88 ffn XFZ:M×OBXFZFnM×O
89 86 87 88 3syl φXFZFnM×O
90 89 adantr φiMkOXFZFnM×O
91 1 2 3 4 5 6 9 10 mamucl φYFZBM×O
92 elmapi YFZBM×OYFZ:M×OB
93 ffn YFZ:M×OBYFZFnM×O
94 91 92 93 3syl φYFZFnM×O
95 94 adantr φiMkOYFZFnM×O
96 xpfi MFinOFinM×OFin
97 4 6 96 syl2anc φM×OFin
98 97 adantr φiMkOM×OFin
99 opelxpi iMkOikM×O
100 99 adantl φiMkOikM×O
101 fnfvof XFZFnM×OYFZFnM×OM×OFinikM×OXFZ+˙fYFZik=XFZik+˙YFZik
102 90 95 98 100 101 syl22anc φiMkOXFZ+˙fYFZik=XFZik+˙YFZik
103 df-ov iXFZ+˙fYFZk=XFZ+˙fYFZik
104 df-ov iXFZk=XFZik
105 df-ov iYFZk=YFZik
106 104 105 oveq12i iXFZk+˙iYFZk=XFZik+˙YFZik
107 102 103 106 3eqtr4g φiMkOiXFZ+˙fYFZk=iXFZk+˙iYFZk
108 79 85 107 3eqtr4d φiMkOiX+˙fYFZk=iXFZ+˙fYFZk
109 108 ralrimivva φiMkOiX+˙fYFZk=iXFZ+˙fYFZk
110 1 2 3 4 5 6 83 10 mamucl φX+˙fYFZBM×O
111 elmapi X+˙fYFZBM×OX+˙fYFZ:M×OB
112 ffn X+˙fYFZ:M×OBX+˙fYFZFnM×O
113 110 111 112 3syl φX+˙fYFZFnM×O
114 1 7 mndvcl RMndXFZBM×OYFZBM×OXFZ+˙fYFZBM×O
115 81 86 91 114 syl3anc φXFZ+˙fYFZBM×O
116 elmapi XFZ+˙fYFZBM×OXFZ+˙fYFZ:M×OB
117 ffn XFZ+˙fYFZ:M×OBXFZ+˙fYFZFnM×O
118 115 116 117 3syl φXFZ+˙fYFZFnM×O
119 eqfnov2 X+˙fYFZFnM×OXFZ+˙fYFZFnM×OX+˙fYFZ=XFZ+˙fYFZiMkOiX+˙fYFZk=iXFZ+˙fYFZk
120 113 118 119 syl2anc φX+˙fYFZ=XFZ+˙fYFZiMkOiX+˙fYFZk=iXFZ+˙fYFZk
121 109 120 mpbird φX+˙fYFZ=XFZ+˙fYFZ