Metamath Proof Explorer


Theorem mapdh6lem2N

Description: Lemma for mapdh6N . Part (6) in Baer p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdh.p + ˙ = + U
mapdh.a ˙ = + C
mapdhe6.y φ Y V 0 ˙
mapdhe6.z φ Z V 0 ˙
mapdhe6.xn φ ¬ X N Y Z
mapdh6.yz φ N Y N Z
mapdh6.fg φ I X F Y = G
mapdh6.fe φ I X F Z = E
Assertion mapdh6lem2N φ M N Y + ˙ Z = J G ˙ E

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdh.p + ˙ = + U
19 mapdh.a ˙ = + C
20 mapdhe6.y φ Y V 0 ˙
21 mapdhe6.z φ Z V 0 ˙
22 mapdhe6.xn φ ¬ X N Y Z
23 mapdh6.yz φ N Y N Z
24 mapdh6.fg φ I X F Y = G
25 mapdh6.fe φ I X F Z = E
26 eqid LSubSp U = LSubSp U
27 3 5 14 dvhlmod φ U LMod
28 20 eldifad φ Y V
29 6 26 9 lspsncl U LMod Y V N Y LSubSp U
30 27 28 29 syl2anc φ N Y LSubSp U
31 21 eldifad φ Z V
32 6 26 9 lspsncl U LMod Z V N Z LSubSp U
33 27 31 32 syl2anc φ N Z LSubSp U
34 eqid LSSum U = LSSum U
35 26 34 lsmcl U LMod N Y LSubSp U N Z LSubSp U N Y LSSum U N Z LSubSp U
36 27 30 33 35 syl3anc φ N Y LSSum U N Z LSubSp U
37 17 eldifad φ X V
38 6 18 lmodvacl U LMod Y V Z V Y + ˙ Z V
39 27 28 31 38 syl3anc φ Y + ˙ Z V
40 6 7 lmodvsubcl U LMod X V Y + ˙ Z V X - ˙ Y + ˙ Z V
41 27 37 39 40 syl3anc φ X - ˙ Y + ˙ Z V
42 6 26 9 lspsncl U LMod X - ˙ Y + ˙ Z V N X - ˙ Y + ˙ Z LSubSp U
43 27 41 42 syl2anc φ N X - ˙ Y + ˙ Z LSubSp U
44 6 26 9 lspsncl U LMod X V N X LSubSp U
45 27 37 44 syl2anc φ N X LSubSp U
46 26 34 lsmcl U LMod N X - ˙ Y + ˙ Z LSubSp U N X LSubSp U N X - ˙ Y + ˙ Z LSSum U N X LSubSp U
47 27 43 45 46 syl3anc φ N X - ˙ Y + ˙ Z LSSum U N X LSubSp U
48 3 4 5 26 14 36 47 mapdin φ M N Y LSSum U N Z N X - ˙ Y + ˙ Z LSSum U N X = M N Y LSSum U N Z M N X - ˙ Y + ˙ Z LSSum U N X
49 eqid LSSum C = LSSum C
50 3 4 5 26 34 10 49 14 30 33 mapdlsm φ M N Y LSSum U N Z = M N Y LSSum C M N Z
51 3 5 14 dvhlvec φ U LVec
52 6 8 9 51 28 21 37 23 22 lspindp2 φ N X N Y ¬ Z N X Y
53 52 simpld φ N X N Y
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 53 mapdhcl φ I X F Y D
55 24 54 eqeltrrd φ G D
56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 55 53 mapdheq φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G
57 24 56 mpbid φ M N Y = J G M N X - ˙ Y = J F R G
58 57 simpld φ M N Y = J G
59 6 8 9 51 20 31 37 23 22 lspindp1 φ N X N Z ¬ Y N X Z
60 59 simpld φ N X N Z
61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31 60 mapdhcl φ I X F Z D
62 25 61 eqeltrrd φ E D
63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 62 60 mapdheq φ I X F Z = E M N Z = J E M N X - ˙ Z = J F R E
64 25 63 mpbid φ M N Z = J E M N X - ˙ Z = J F R E
65 64 simpld φ M N Z = J E
66 58 65 oveq12d φ M N Y LSSum C M N Z = J G LSSum C J E
67 50 66 eqtrd φ M N Y LSSum U N Z = J G LSSum C J E
68 3 4 5 26 34 10 49 14 43 45 mapdlsm φ M N X - ˙ Y + ˙ Z LSSum U N X = M N X - ˙ Y + ˙ Z LSSum C M N X
69 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6lem1N φ M N X - ˙ Y + ˙ Z = J F R G ˙ E
70 69 16 oveq12d φ M N X - ˙ Y + ˙ Z LSSum C M N X = J F R G ˙ E LSSum C J F
71 68 70 eqtrd φ M N X - ˙ Y + ˙ Z LSSum U N X = J F R G ˙ E LSSum C J F
72 67 71 ineq12d φ M N Y LSSum U N Z M N X - ˙ Y + ˙ Z LSSum U N X = J G LSSum C J E J F R G ˙ E LSSum C J F
73 48 72 eqtrd φ M N Y LSSum U N Z N X - ˙ Y + ˙ Z LSSum U N X = J G LSSum C J E J F R G ˙ E LSSum C J F
74 6 7 8 34 9 51 37 22 23 20 21 18 baerlem5b φ N Y + ˙ Z = N Y LSSum U N Z N X - ˙ Y + ˙ Z LSSum U N X
75 74 fveq2d φ M N Y + ˙ Z = M N Y LSSum U N Z N X - ˙ Y + ˙ Z LSSum U N X
76 3 10 14 lcdlvec φ C LVec
77 3 4 5 6 9 10 11 13 14 15 16 37 28 55 58 31 62 65 22 mapdindp φ ¬ F J G E
78 3 4 5 6 9 10 11 13 14 55 58 28 31 62 65 23 mapdncol φ J G J E
79 3 4 5 6 9 10 11 13 14 55 58 8 1 20 mapdn0 φ G D Q
80 3 4 5 6 9 10 11 13 14 62 65 8 1 21 mapdn0 φ E D Q
81 11 12 1 49 13 76 15 77 78 79 80 19 baerlem5b φ J G ˙ E = J G LSSum C J E J F R G ˙ E LSSum C J F
82 73 75 81 3eqtr4d φ M N Y + ˙ Z = J G ˙ E