Metamath Proof Explorer


Theorem mbfaddlem

Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses mbfadd.1 φFMblFn
mbfadd.2 φGMblFn
mbfadd.3 φF:A
mbfadd.4 φG:A
Assertion mbfaddlem φF+fGMblFn

Proof

Step Hyp Ref Expression
1 mbfadd.1 φFMblFn
2 mbfadd.2 φGMblFn
3 mbfadd.3 φF:A
4 mbfadd.4 φG:A
5 readdcl xyx+y
6 5 adantl φxyx+y
7 3 fdmd φdomF=A
8 mbfdm FMblFndomFdomvol
9 1 8 syl φdomFdomvol
10 7 9 eqeltrrd φAdomvol
11 inidm AA=A
12 6 3 4 10 10 11 off φF+fG:A
13 eliun xrF-1r+∞G-1yr+∞rxF-1r+∞G-1yr+∞
14 r19.42v rxAFxr+∞Gxyr+∞xArFxr+∞Gxyr+∞
15 simplr φyxAy
16 4 adantr φyG:A
17 16 ffvelcdmda φyxAGx
18 3 adantr φyF:A
19 18 ffvelcdmda φyxAFx
20 15 17 19 ltsubaddd φyxAyGx<Fxy<Fx+Gx
21 15 adantr φyxAry
22 qre rr
23 22 adantl φyxArr
24 17 adantr φyxArGx
25 ltsub23 yrGxyr<GxyGx<r
26 21 23 24 25 syl3anc φyxAryr<GxyGx<r
27 26 anbi1cd φyxArr<Fxyr<GxyGx<rr<Fx
28 27 rexbidva φyxArr<Fxyr<GxryGx<rr<Fx
29 15 17 resubcld φyxAyGx
30 29 adantr φyxAryGx
31 19 adantr φyxArFx
32 lttr yGxrFxyGx<rr<FxyGx<Fx
33 30 23 31 32 syl3anc φyxAryGx<rr<FxyGx<Fx
34 33 rexlimdva φyxAryGx<rr<FxyGx<Fx
35 qbtwnre yGxFxyGx<FxryGx<rr<Fx
36 35 3expia yGxFxyGx<FxryGx<rr<Fx
37 29 19 36 syl2anc φyxAyGx<FxryGx<rr<Fx
38 34 37 impbid φyxAryGx<rr<FxyGx<Fx
39 28 38 bitrd φyxArr<Fxyr<GxyGx<Fx
40 3 ffnd φFFnA
41 40 adantr φyFFnA
42 4 ffnd φGFnA
43 42 adantr φyGFnA
44 10 adantr φyAdomvol
45 eqidd φyxAFx=Fx
46 eqidd φyxAGx=Gx
47 41 43 44 44 11 45 46 ofval φyxAF+fGx=Fx+Gx
48 47 breq2d φyxAy<F+fGxy<Fx+Gx
49 20 39 48 3bitr4d φyxArr<Fxyr<Gxy<F+fGx
50 23 rexrd φyxArr*
51 elioopnf r*Fxr+∞Fxr<Fx
52 50 51 syl φyxArFxr+∞Fxr<Fx
53 31 52 mpbirand φyxArFxr+∞r<Fx
54 21 23 resubcld φyxAryr
55 54 rexrd φyxAryr*
56 elioopnf yr*Gxyr+∞Gxyr<Gx
57 55 56 syl φyxArGxyr+∞Gxyr<Gx
58 24 57 mpbirand φyxArGxyr+∞yr<Gx
59 53 58 anbi12d φyxArFxr+∞Gxyr+∞r<Fxyr<Gx
60 59 rexbidva φyxArFxr+∞Gxyr+∞rr<Fxyr<Gx
61 12 adantr φyF+fG:A
62 61 ffvelcdmda φyxAF+fGx
63 15 rexrd φyxAy*
64 elioopnf y*F+fGxy+∞F+fGxy<F+fGx
65 63 64 syl φyxAF+fGxy+∞F+fGxy<F+fGx
66 62 65 mpbirand φyxAF+fGxy+∞y<F+fGx
67 49 60 66 3bitr4d φyxArFxr+∞Gxyr+∞F+fGxy+∞
68 67 pm5.32da φyxArFxr+∞Gxyr+∞xAF+fGxy+∞
69 14 68 bitrid φyrxAFxr+∞Gxyr+∞xAF+fGxy+∞
70 elpreima FFnAxF-1r+∞xAFxr+∞
71 41 70 syl φyxF-1r+∞xAFxr+∞
72 elpreima GFnAxG-1yr+∞xAGxyr+∞
73 43 72 syl φyxG-1yr+∞xAGxyr+∞
74 71 73 anbi12d φyxF-1r+∞xG-1yr+∞xAFxr+∞xAGxyr+∞
75 elin xF-1r+∞G-1yr+∞xF-1r+∞xG-1yr+∞
76 anandi xAFxr+∞Gxyr+∞xAFxr+∞xAGxyr+∞
77 74 75 76 3bitr4g φyxF-1r+∞G-1yr+∞xAFxr+∞Gxyr+∞
78 77 rexbidv φyrxF-1r+∞G-1yr+∞rxAFxr+∞Gxyr+∞
79 12 ffnd φF+fGFnA
80 79 adantr φyF+fGFnA
81 elpreima F+fGFnAxF+fG-1y+∞xAF+fGxy+∞
82 80 81 syl φyxF+fG-1y+∞xAF+fGxy+∞
83 69 78 82 3bitr4d φyrxF-1r+∞G-1yr+∞xF+fG-1y+∞
84 13 83 bitrid φyxrF-1r+∞G-1yr+∞xF+fG-1y+∞
85 84 eqrdv φyrF-1r+∞G-1yr+∞=F+fG-1y+∞
86 qnnen
87 endom
88 86 87 ax-mp
89 mbfima FMblFnF:AF-1r+∞domvol
90 1 3 89 syl2anc φF-1r+∞domvol
91 mbfima GMblFnG:AG-1yr+∞domvol
92 2 4 91 syl2anc φG-1yr+∞domvol
93 inmbl F-1r+∞domvolG-1yr+∞domvolF-1r+∞G-1yr+∞domvol
94 90 92 93 syl2anc φF-1r+∞G-1yr+∞domvol
95 94 ad2antrr φyrF-1r+∞G-1yr+∞domvol
96 95 ralrimiva φyrF-1r+∞G-1yr+∞domvol
97 iunmbl2 rF-1r+∞G-1yr+∞domvolrF-1r+∞G-1yr+∞domvol
98 88 96 97 sylancr φyrF-1r+∞G-1yr+∞domvol
99 85 98 eqeltrrd φyF+fG-1y+∞domvol
100 12 99 ismbf3d φF+fGMblFn