| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhphflem.d |  | 
						
							| 2 |  | mhphflem.h |  | 
						
							| 3 |  | mhphflem.k |  | 
						
							| 4 |  | mhphflem.e |  | 
						
							| 5 |  | mhphflem.i |  | 
						
							| 6 |  | mhphflem.g |  | 
						
							| 7 |  | mhphflem.l |  | 
						
							| 8 |  | mhphflem.n |  | 
						
							| 9 |  | nn0subm |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 | submbas |  | 
						
							| 12 | 9 11 | ax-mp |  | 
						
							| 13 |  | cnfld0 |  | 
						
							| 14 | 10 13 | subm0 |  | 
						
							| 15 | 9 14 | ax-mp |  | 
						
							| 16 |  | cnring |  | 
						
							| 17 |  | ringcmn |  | 
						
							| 18 | 16 17 | ax-mp |  | 
						
							| 19 | 10 | submcmn |  | 
						
							| 20 | 18 9 19 | mp2an |  | 
						
							| 21 | 20 | a1i |  | 
						
							| 22 | 6 | adantr |  | 
						
							| 23 | 5 | adantr |  | 
						
							| 24 |  | cnfldadd |  | 
						
							| 25 | 10 24 | ressplusg |  | 
						
							| 26 | 9 25 | ax-mp |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 10 | submmnd |  | 
						
							| 30 | 9 29 | mp1i |  | 
						
							| 31 | 6 | ad2antrr |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 7 | ad2antrr |  | 
						
							| 34 | 3 4 31 32 33 | mulgnn0cld |  | 
						
							| 35 | 34 | fmpttd |  | 
						
							| 36 | 6 | ad2antrr |  | 
						
							| 37 |  | simprl |  | 
						
							| 38 |  | simprr |  | 
						
							| 39 | 7 | ad2antrr |  | 
						
							| 40 | 3 4 27 | mulgnn0dir |  | 
						
							| 41 | 36 37 38 39 40 | syl13anc |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 |  | oveq1 |  | 
						
							| 44 |  | nn0addcl |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 |  | ovexd |  | 
						
							| 47 | 42 43 45 46 | fvmptd3 |  | 
						
							| 48 |  | oveq1 |  | 
						
							| 49 |  | ovexd |  | 
						
							| 50 | 42 48 37 49 | fvmptd3 |  | 
						
							| 51 |  | oveq1 |  | 
						
							| 52 |  | ovexd |  | 
						
							| 53 | 42 51 38 52 | fvmptd3 |  | 
						
							| 54 | 50 53 | oveq12d |  | 
						
							| 55 | 41 47 54 | 3eqtr4d |  | 
						
							| 56 |  | oveq1 |  | 
						
							| 57 |  | 0nn0 |  | 
						
							| 58 | 57 | a1i |  | 
						
							| 59 |  | ovexd |  | 
						
							| 60 | 42 56 58 59 | fvmptd3 |  | 
						
							| 61 | 7 | adantr |  | 
						
							| 62 | 3 28 4 | mulg0 |  | 
						
							| 63 | 61 62 | syl |  | 
						
							| 64 | 60 63 | eqtrd |  | 
						
							| 65 | 12 3 26 27 15 28 30 22 35 55 64 | ismhmd |  | 
						
							| 66 |  | elrabi |  | 
						
							| 67 | 66 2 | eleq2s |  | 
						
							| 68 | 67 | adantl |  | 
						
							| 69 | 1 | psrbagf |  | 
						
							| 70 | 68 69 | syl |  | 
						
							| 71 | 70 | ffvelcdmda |  | 
						
							| 72 | 70 | feqmptd |  | 
						
							| 73 | 1 | psrbagfsupp |  | 
						
							| 74 | 68 73 | syl |  | 
						
							| 75 | 72 74 | eqbrtrrd |  | 
						
							| 76 |  | oveq1 |  | 
						
							| 77 |  | oveq1 |  | 
						
							| 78 | 12 15 21 22 23 65 71 75 76 77 | gsummhm2 |  | 
						
							| 79 | 72 | oveq2d |  | 
						
							| 80 |  | oveq2 |  | 
						
							| 81 | 80 | eqeq1d |  | 
						
							| 82 | 81 2 | elrab2 |  | 
						
							| 83 | 82 | simprbi |  | 
						
							| 84 | 83 | adantl |  | 
						
							| 85 | 79 84 | eqtr3d |  | 
						
							| 86 | 85 | oveq1d |  | 
						
							| 87 | 78 86 | eqtrd |  |