Metamath Proof Explorer


Theorem mhphflem

Description: Lemma for mhphf . Add several multiples of L together, in a case where the total amount of multiplies is N . (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses mhphflem.d D=h0I|h-1Fin
mhphflem.h H=gD|fld𝑠0g=N
mhphflem.k B=BaseG
mhphflem.e ·˙=G
mhphflem.i φIV
mhphflem.g φGMnd
mhphflem.l φLB
mhphflem.n φN0
Assertion mhphflem φaHGvIav·˙L=N·˙L

Proof

Step Hyp Ref Expression
1 mhphflem.d D=h0I|h-1Fin
2 mhphflem.h H=gD|fld𝑠0g=N
3 mhphflem.k B=BaseG
4 mhphflem.e ·˙=G
5 mhphflem.i φIV
6 mhphflem.g φGMnd
7 mhphflem.l φLB
8 mhphflem.n φN0
9 nn0subm 0SubMndfld
10 eqid fld𝑠0=fld𝑠0
11 10 submbas 0SubMndfld0=Basefld𝑠0
12 9 11 ax-mp 0=Basefld𝑠0
13 cnfld0 0=0fld
14 10 13 subm0 0SubMndfld0=0fld𝑠0
15 9 14 ax-mp 0=0fld𝑠0
16 cnring fldRing
17 ringcmn fldRingfldCMnd
18 16 17 ax-mp fldCMnd
19 10 submcmn fldCMnd0SubMndfldfld𝑠0CMnd
20 18 9 19 mp2an fld𝑠0CMnd
21 20 a1i φaHfld𝑠0CMnd
22 6 adantr φaHGMnd
23 5 adantr φaHIV
24 cnfldadd +=+fld
25 10 24 ressplusg 0SubMndfld+=+fld𝑠0
26 9 25 ax-mp +=+fld𝑠0
27 eqid +G=+G
28 eqid 0G=0G
29 10 submmnd 0SubMndfldfld𝑠0Mnd
30 9 29 mp1i φaHfld𝑠0Mnd
31 6 ad2antrr φaHn0GMnd
32 simpr φaHn0n0
33 7 ad2antrr φaHn0LB
34 3 4 31 32 33 mulgnn0cld φaHn0n·˙LB
35 34 fmpttd φaHn0n·˙L:0B
36 6 ad2antrr φaHx0y0GMnd
37 simprl φaHx0y0x0
38 simprr φaHx0y0y0
39 7 ad2antrr φaHx0y0LB
40 3 4 27 mulgnn0dir GMndx0y0LBx+y·˙L=x·˙L+Gy·˙L
41 36 37 38 39 40 syl13anc φaHx0y0x+y·˙L=x·˙L+Gy·˙L
42 eqid n0n·˙L=n0n·˙L
43 oveq1 n=x+yn·˙L=x+y·˙L
44 nn0addcl x0y0x+y0
45 44 adantl φaHx0y0x+y0
46 ovexd φaHx0y0x+y·˙LV
47 42 43 45 46 fvmptd3 φaHx0y0n0n·˙Lx+y=x+y·˙L
48 oveq1 n=xn·˙L=x·˙L
49 ovexd φaHx0y0x·˙LV
50 42 48 37 49 fvmptd3 φaHx0y0n0n·˙Lx=x·˙L
51 oveq1 n=yn·˙L=y·˙L
52 ovexd φaHx0y0y·˙LV
53 42 51 38 52 fvmptd3 φaHx0y0n0n·˙Ly=y·˙L
54 50 53 oveq12d φaHx0y0n0n·˙Lx+Gn0n·˙Ly=x·˙L+Gy·˙L
55 41 47 54 3eqtr4d φaHx0y0n0n·˙Lx+y=n0n·˙Lx+Gn0n·˙Ly
56 oveq1 n=0n·˙L=0·˙L
57 0nn0 00
58 57 a1i φaH00
59 ovexd φaH0·˙LV
60 42 56 58 59 fvmptd3 φaHn0n·˙L0=0·˙L
61 7 adantr φaHLB
62 3 28 4 mulg0 LB0·˙L=0G
63 61 62 syl φaH0·˙L=0G
64 60 63 eqtrd φaHn0n·˙L0=0G
65 12 3 26 27 15 28 30 22 35 55 64 ismhmd φaHn0n·˙Lfld𝑠0MndHomG
66 elrabi agD|fld𝑠0g=NaD
67 66 2 eleq2s aHaD
68 67 adantl φaHaD
69 1 psrbagf aDa:I0
70 68 69 syl φaHa:I0
71 70 ffvelcdmda φaHvIav0
72 70 feqmptd φaHa=vIav
73 1 psrbagfsupp aDfinSupp0a
74 68 73 syl φaHfinSupp0a
75 72 74 eqbrtrrd φaHfinSupp0vIav
76 oveq1 n=avn·˙L=av·˙L
77 oveq1 n=fld𝑠0vIavn·˙L=fld𝑠0vIav·˙L
78 12 15 21 22 23 65 71 75 76 77 gsummhm2 φaHGvIav·˙L=fld𝑠0vIav·˙L
79 72 oveq2d φaHfld𝑠0a=fld𝑠0vIav
80 oveq2 g=afld𝑠0g=fld𝑠0a
81 80 eqeq1d g=afld𝑠0g=Nfld𝑠0a=N
82 81 2 elrab2 aHaDfld𝑠0a=N
83 82 simprbi aHfld𝑠0a=N
84 83 adantl φaHfld𝑠0a=N
85 79 84 eqtr3d φaHfld𝑠0vIav=N
86 85 oveq1d φaHfld𝑠0vIav·˙L=N·˙L
87 78 86 eqtrd φaHGvIav·˙L=N·˙L