Metamath Proof Explorer


Theorem minvecolem6

Description: Lemma for minveco . Any minimal point is less than S away from A . (Contributed by Mario Carneiro, 9-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
Assertion minvecolem6 φxYADx2S2+0yYNAMxNAMy

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 phnv UCPreHilOLDUNrmCVec
13 5 12 syl φUNrmCVec
14 13 adantr φxYUNrmCVec
15 7 adantr φxYAX
16 inss1 SubSpUCBanSubSpU
17 16 6 sselid φWSubSpU
18 eqid SubSpU=SubSpU
19 1 4 18 sspba UNrmCVecWSubSpUYX
20 13 17 19 syl2anc φYX
21 20 sselda φxYxX
22 1 2 3 8 imsdval UNrmCVecAXxXADx=NAMx
23 14 15 21 22 syl3anc φxYADx=NAMx
24 23 oveq1d φxYADx2=NAMx2
25 1 2 3 4 5 6 7 8 9 10 minvecolem1 φRRwR0w
26 25 adantr φxYRRwR0w
27 26 simp1d φxYR
28 26 simp2d φxYR
29 0red φxY0
30 26 simp3d φxYwR0w
31 breq1 x=0xw0w
32 31 ralbidv x=0wRxwwR0w
33 32 rspcev 0wR0wxwRxw
34 29 30 33 syl2anc φxYxwRxw
35 infrecl RRxwRxwsupR<
36 27 28 34 35 syl3anc φxYsupR<
37 11 36 eqeltrid φxYS
38 37 resqcld φxYS2
39 38 recnd φxYS2
40 39 addridd φxYS2+0=S2
41 24 40 breq12d φxYADx2S2+0NAMx2S2
42 1 2 nvmcl UNrmCVecAXxXAMxX
43 14 15 21 42 syl3anc φxYAMxX
44 1 3 nvcl UNrmCVecAMxXNAMx
45 14 43 44 syl2anc φxYNAMx
46 1 3 nvge0 UNrmCVecAMxX0NAMx
47 14 43 46 syl2anc φxY0NAMx
48 infregelb RRxwRxw00supR<wR0w
49 27 28 34 29 48 syl31anc φxY0supR<wR0w
50 30 49 mpbird φxY0supR<
51 50 11 breqtrrdi φxY0S
52 45 37 47 51 le2sqd φxYNAMxSNAMx2S2
53 11 breq2i NAMxSNAMxsupR<
54 infregelb RRxwRxwNAMxNAMxsupR<wRNAMxw
55 27 28 34 45 54 syl31anc φxYNAMxsupR<wRNAMxw
56 53 55 bitrid φxYNAMxSwRNAMxw
57 41 52 56 3bitr2d φxYADx2S2+0wRNAMxw
58 10 raleqi wRNAMxwwranyYNAMyNAMxw
59 fvex NAMyV
60 59 rgenw yYNAMyV
61 eqid yYNAMy=yYNAMy
62 breq2 w=NAMyNAMxwNAMxNAMy
63 61 62 ralrnmptw yYNAMyVwranyYNAMyNAMxwyYNAMxNAMy
64 60 63 ax-mp wranyYNAMyNAMxwyYNAMxNAMy
65 58 64 bitri wRNAMxwyYNAMxNAMy
66 57 65 bitrdi φxYADx2S2+0yYNAMxNAMy