Metamath Proof Explorer


Theorem minvecolem7

Description: Lemma for minveco . Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
Assertion minvecolem7 φ∃!xYyYNAMxNAMy

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 1 2 3 4 5 6 7 8 9 10 11 minvecolem5 φxYyYNAMxNAMy
13 5 ad2antrr φxYwYADx2S2+0ADw2S2+0UCPreHilOLD
14 6 ad2antrr φxYwYADx2S2+0ADw2S2+0WSubSpUCBan
15 7 ad2antrr φxYwYADx2S2+0ADw2S2+0AX
16 0re 0
17 16 a1i φxYwYADx2S2+0ADw2S2+00
18 0le0 00
19 18 a1i φxYwYADx2S2+0ADw2S2+000
20 simplrl φxYwYADx2S2+0ADw2S2+0xY
21 simplrr φxYwYADx2S2+0ADw2S2+0wY
22 simprl φxYwYADx2S2+0ADw2S2+0ADx2S2+0
23 simprr φxYwYADx2S2+0ADw2S2+0ADw2S2+0
24 1 2 3 4 13 14 15 8 9 10 11 17 19 20 21 22 23 minvecolem2 φxYwYADx2S2+0ADw2S2+0xDw240
25 24 ex φxYwYADx2S2+0ADw2S2+0xDw240
26 1 2 3 4 5 6 7 8 9 10 11 minvecolem6 φxYADx2S2+0yYNAMxNAMy
27 26 adantrr φxYwYADx2S2+0yYNAMxNAMy
28 1 2 3 4 5 6 7 8 9 10 11 minvecolem6 φwYADw2S2+0yYNAMwNAMy
29 28 adantrl φxYwYADw2S2+0yYNAMwNAMy
30 27 29 anbi12d φxYwYADx2S2+0ADw2S2+0yYNAMxNAMyyYNAMwNAMy
31 4cn 4
32 31 mul01i 40=0
33 32 breq2i xDw240xDw20
34 phnv UCPreHilOLDUNrmCVec
35 5 34 syl φUNrmCVec
36 35 adantr φxYwYUNrmCVec
37 1 8 imsmet UNrmCVecDMetX
38 36 37 syl φxYwYDMetX
39 inss1 SubSpUCBanSubSpU
40 39 6 sselid φWSubSpU
41 eqid SubSpU=SubSpU
42 1 4 41 sspba UNrmCVecWSubSpUYX
43 35 40 42 syl2anc φYX
44 43 adantr φxYwYYX
45 simprl φxYwYxY
46 44 45 sseldd φxYwYxX
47 simprr φxYwYwY
48 44 47 sseldd φxYwYwX
49 metcl DMetXxXwXxDw
50 38 46 48 49 syl3anc φxYwYxDw
51 50 sqge0d φxYwY0xDw2
52 51 biantrud φxYwYxDw20xDw200xDw2
53 50 resqcld φxYwYxDw2
54 letri3 xDw20xDw2=0xDw200xDw2
55 53 16 54 sylancl φxYwYxDw2=0xDw200xDw2
56 50 recnd φxYwYxDw
57 sqeq0 xDwxDw2=0xDw=0
58 56 57 syl φxYwYxDw2=0xDw=0
59 meteq0 DMetXxXwXxDw=0x=w
60 38 46 48 59 syl3anc φxYwYxDw=0x=w
61 58 60 bitrd φxYwYxDw2=0x=w
62 52 55 61 3bitr2d φxYwYxDw20x=w
63 33 62 bitrid φxYwYxDw240x=w
64 25 30 63 3imtr3d φxYwYyYNAMxNAMyyYNAMwNAMyx=w
65 64 ralrimivva φxYwYyYNAMxNAMyyYNAMwNAMyx=w
66 oveq2 x=wAMx=AMw
67 66 fveq2d x=wNAMx=NAMw
68 67 breq1d x=wNAMxNAMyNAMwNAMy
69 68 ralbidv x=wyYNAMxNAMyyYNAMwNAMy
70 69 reu4 ∃!xYyYNAMxNAMyxYyYNAMxNAMyxYwYyYNAMxNAMyyYNAMwNAMyx=w
71 12 65 70 sylanbrc φ∃!xYyYNAMxNAMy