| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
|
| 2 |
|
elfzoelz |
|
| 3 |
2
|
zred |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
elfzoelz |
|
| 6 |
5
|
zred |
|
| 7 |
|
leloe |
|
| 8 |
4 6 7
|
syl2anr |
|
| 9 |
|
elfzo0 |
|
| 10 |
|
elfzo0 |
|
| 11 |
|
nn0cn |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
adantl |
|
| 14 |
|
nn0cn |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
15
|
adantr |
|
| 17 |
|
nncn |
|
| 18 |
17
|
3ad2ant2 |
|
| 19 |
18
|
adantr |
|
| 20 |
13 16 19
|
subadd23d |
|
| 21 |
|
simpl |
|
| 22 |
|
nn0z |
|
| 23 |
|
nnz |
|
| 24 |
|
znnsub |
|
| 25 |
22 23 24
|
syl2an |
|
| 26 |
25
|
biimp3a |
|
| 27 |
|
nn0nnaddcl |
|
| 28 |
21 26 27
|
syl2anr |
|
| 29 |
20 28
|
eqeltrd |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simp2 |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
adantr |
|
| 34 |
|
nn0re |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
adantl |
|
| 37 |
|
nn0re |
|
| 38 |
37
|
3ad2ant1 |
|
| 39 |
38
|
adantr |
|
| 40 |
36 39
|
sublt0d |
|
| 41 |
40
|
bicomd |
|
| 42 |
41
|
biimpa |
|
| 43 |
|
resubcl |
|
| 44 |
35 38 43
|
syl2anr |
|
| 45 |
|
nnre |
|
| 46 |
45
|
3ad2ant2 |
|
| 47 |
46
|
adantr |
|
| 48 |
44 47
|
jca |
|
| 49 |
48
|
adantr |
|
| 50 |
|
ltaddnegr |
|
| 51 |
49 50
|
syl |
|
| 52 |
42 51
|
mpbid |
|
| 53 |
|
elfzo1 |
|
| 54 |
30 33 52 53
|
syl3anbrc |
|
| 55 |
54
|
exp31 |
|
| 56 |
10 55
|
sylbi |
|
| 57 |
56
|
com12 |
|
| 58 |
57
|
3adant2 |
|
| 59 |
9 58
|
sylbi |
|
| 60 |
1 59
|
syl |
|
| 61 |
60
|
impcom |
|
| 62 |
61
|
impcom |
|
| 63 |
|
oveq1 |
|
| 64 |
2
|
zcnd |
|
| 65 |
64
|
adantr |
|
| 66 |
14
|
adantr |
|
| 67 |
66
|
adantl |
|
| 68 |
17
|
adantl |
|
| 69 |
68
|
adantl |
|
| 70 |
65 67 69
|
3jca |
|
| 71 |
70
|
ex |
|
| 72 |
1 71
|
syl |
|
| 73 |
72
|
com12 |
|
| 74 |
73
|
3adant3 |
|
| 75 |
10 74
|
sylbi |
|
| 76 |
75
|
imp |
|
| 77 |
76
|
adantl |
|
| 78 |
|
nppcan |
|
| 79 |
77 78
|
syl |
|
| 80 |
63 79
|
sylan9eqr |
|
| 81 |
80
|
oveq1d |
|
| 82 |
81
|
eqeq2d |
|
| 83 |
9
|
biimpi |
|
| 84 |
83
|
a1d |
|
| 85 |
1 84
|
syl |
|
| 86 |
85
|
impcom |
|
| 87 |
86
|
adantl |
|
| 88 |
|
addmodidr |
|
| 89 |
88
|
eqcomd |
|
| 90 |
87 89
|
syl |
|
| 91 |
62 82 90
|
rspcedvd |
|
| 92 |
91
|
ex |
|
| 93 |
|
eldifsn |
|
| 94 |
|
eqneqall |
|
| 95 |
94
|
com12 |
|
| 96 |
95
|
adantl |
|
| 97 |
93 96
|
sylbi |
|
| 98 |
97
|
adantl |
|
| 99 |
98
|
com12 |
|
| 100 |
92 99
|
jaoi |
|
| 101 |
100
|
com12 |
|
| 102 |
8 101
|
sylbid |
|
| 103 |
102
|
com12 |
|
| 104 |
|
ltnle |
|
| 105 |
6 4 104
|
syl2an |
|
| 106 |
105
|
bicomd |
|
| 107 |
22
|
3ad2ant1 |
|
| 108 |
|
nn0z |
|
| 109 |
108
|
adantr |
|
| 110 |
|
znnsub |
|
| 111 |
107 109 110
|
syl2anr |
|
| 112 |
111
|
biimpa |
|
| 113 |
31
|
adantl |
|
| 114 |
113
|
adantr |
|
| 115 |
|
nn0ge0 |
|
| 116 |
115
|
3ad2ant1 |
|
| 117 |
116
|
adantl |
|
| 118 |
|
subge02 |
|
| 119 |
34 38 118
|
syl2an |
|
| 120 |
117 119
|
mpbid |
|
| 121 |
38
|
adantl |
|
| 122 |
34
|
adantr |
|
| 123 |
46
|
adantl |
|
| 124 |
121 122 123
|
3jca |
|
| 125 |
43
|
ancoms |
|
| 126 |
125
|
3adant3 |
|
| 127 |
|
simp2 |
|
| 128 |
|
simp3 |
|
| 129 |
126 127 128
|
3jca |
|
| 130 |
124 129
|
syl |
|
| 131 |
|
lelttr |
|
| 132 |
130 131
|
syl |
|
| 133 |
120 132
|
mpand |
|
| 134 |
133
|
impancom |
|
| 135 |
134
|
imp |
|
| 136 |
135
|
adantr |
|
| 137 |
112 114 136
|
3jca |
|
| 138 |
137
|
exp31 |
|
| 139 |
138
|
3adant2 |
|
| 140 |
9 139
|
sylbi |
|
| 141 |
1 140
|
syl |
|
| 142 |
141
|
com12 |
|
| 143 |
10 142
|
sylbi |
|
| 144 |
143
|
imp |
|
| 145 |
106 144
|
sylbid |
|
| 146 |
145
|
impcom |
|
| 147 |
|
elfzo1 |
|
| 148 |
146 147
|
sylibr |
|
| 149 |
|
oveq1 |
|
| 150 |
1 64
|
syl |
|
| 151 |
5
|
zcnd |
|
| 152 |
|
npcan |
|
| 153 |
150 151 152
|
syl2anr |
|
| 154 |
153
|
adantl |
|
| 155 |
149 154
|
sylan9eqr |
|
| 156 |
155
|
oveq1d |
|
| 157 |
156
|
eqeq2d |
|
| 158 |
|
zmodidfzoimp |
|
| 159 |
1 158
|
syl |
|
| 160 |
159
|
adantl |
|
| 161 |
160
|
adantl |
|
| 162 |
161
|
eqcomd |
|
| 163 |
148 157 162
|
rspcedvd |
|
| 164 |
163
|
ex |
|
| 165 |
103 164
|
pm2.61i |
|