Metamath Proof Explorer


Theorem mp2pm2mp

Description: A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019)

Ref Expression
Hypotheses mp2pm2mp.a A=NMatR
mp2pm2mp.q Q=Poly1A
mp2pm2mp.l L=BaseQ
mp2pm2mp.m ·˙=P
mp2pm2mp.e E=mulGrpP
mp2pm2mp.y Y=var1R
mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
mp2pm2mplem2.p P=Poly1R
mp2pm2mp.t T=NpMatToMatPolyR
Assertion mp2pm2mp NFinRRingOLTIO=O

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A=NMatR
2 mp2pm2mp.q Q=Poly1A
3 mp2pm2mp.l L=BaseQ
4 mp2pm2mp.m ·˙=P
5 mp2pm2mp.e E=mulGrpP
6 mp2pm2mp.y Y=var1R
7 mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
8 mp2pm2mplem2.p P=Poly1R
9 mp2pm2mp.t T=NpMatToMatPolyR
10 eqid NMatP=NMatP
11 eqid BaseNMatP=BaseNMatP
12 1 2 3 8 4 5 6 7 10 11 mply1topmatcl NFinRRingOLIOBaseNMatP
13 eqid Q=Q
14 eqid mulGrpQ=mulGrpQ
15 eqid var1A=var1A
16 8 10 11 13 14 15 1 2 9 pm2mpfval NFinRRingIOBaseNMatPTIO=Qn0IOdecompPMatnQnmulGrpQvar1A
17 12 16 syld3an3 NFinRRingOLTIO=Qn0IOdecompPMatnQnmulGrpQvar1A
18 1 matring NFinRRingARing
19 18 3adant3 NFinRRingOLARing
20 eqid 0Q=0Q
21 2 ply1ring ARingQRing
22 ringcmn QRingQCMnd
23 18 21 22 3syl NFinRRingQCMnd
24 23 3adant3 NFinRRingOLQCMnd
25 nn0ex 0V
26 25 a1i NFinRRingOL0V
27 19 adantr NFinRRingOLn0ARing
28 simpl2 NFinRRingOLn0RRing
29 12 adantr NFinRRingOLn0IOBaseNMatP
30 simpr NFinRRingOLn0n0
31 eqid BaseA=BaseA
32 8 10 11 1 31 decpmatcl RRingIOBaseNMatPn0IOdecompPMatnBaseA
33 28 29 30 32 syl3anc NFinRRingOLn0IOdecompPMatnBaseA
34 eqid mulGrpQ=mulGrpQ
35 31 2 15 13 34 14 3 ply1tmcl ARingIOdecompPMatnBaseAn0IOdecompPMatnQnmulGrpQvar1AL
36 27 33 30 35 syl3anc NFinRRingOLn0IOdecompPMatnQnmulGrpQvar1AL
37 36 fmpttd NFinRRingOLn0IOdecompPMatnQnmulGrpQvar1A:0L
38 fveq2 k=ncoe1pk=coe1pn
39 38 oveqd k=nicoe1pkj=icoe1pnj
40 oveq1 k=nkEY=nEY
41 39 40 oveq12d k=nicoe1pkj·˙kEY=icoe1pnj·˙nEY
42 41 cbvmptv k0icoe1pkj·˙kEY=n0icoe1pnj·˙nEY
43 42 a1i iNjNk0icoe1pkj·˙kEY=n0icoe1pnj·˙nEY
44 43 oveq2d iNjNPk0icoe1pkj·˙kEY=Pn0icoe1pnj·˙nEY
45 44 mpoeq3ia iN,jNPk0icoe1pkj·˙kEY=iN,jNPn0icoe1pnj·˙nEY
46 45 mpteq2i pLiN,jNPk0icoe1pkj·˙kEY=pLiN,jNPn0icoe1pnj·˙nEY
47 7 46 eqtri I=pLiN,jNPn0icoe1pnj·˙nEY
48 1 2 3 4 5 6 47 8 13 14 15 mp2pm2mplem5 NFinRRingOLfinSupp0Qn0IOdecompPMatnQnmulGrpQvar1A
49 3 20 24 26 37 48 gsumcl NFinRRingOLQn0IOdecompPMatnQnmulGrpQvar1AL
50 simp3 NFinRRingOLOL
51 19 49 50 3jca NFinRRingOLARingQn0IOdecompPMatnQnmulGrpQvar1ALOL
52 1 2 3 4 5 6 7 8 mp2pm2mplem4 NFinRRingOLn0IOdecompPMatn=coe1On
53 52 oveq1d NFinRRingOLn0IOdecompPMatnQnmulGrpQvar1A=coe1OnQnmulGrpQvar1A
54 53 adantlr NFinRRingOLl0n0IOdecompPMatnQnmulGrpQvar1A=coe1OnQnmulGrpQvar1A
55 54 mpteq2dva NFinRRingOLl0n0IOdecompPMatnQnmulGrpQvar1A=n0coe1OnQnmulGrpQvar1A
56 55 oveq2d NFinRRingOLl0Qn0IOdecompPMatnQnmulGrpQvar1A=Qn0coe1OnQnmulGrpQvar1A
57 56 fveq2d NFinRRingOLl0coe1Qn0IOdecompPMatnQnmulGrpQvar1A=coe1Qn0coe1OnQnmulGrpQvar1A
58 57 fveq1d NFinRRingOLl0coe1Qn0IOdecompPMatnQnmulGrpQvar1Al=coe1Qn0coe1OnQnmulGrpQvar1Al
59 19 50 jca NFinRRingOLARingOL
60 59 adantr NFinRRingOLl0ARingOL
61 eqid coe1O=coe1O
62 2 15 3 13 34 14 61 ply1coe ARingOLO=Qn0coe1OnQnmulGrpQvar1A
63 60 62 syl NFinRRingOLl0O=Qn0coe1OnQnmulGrpQvar1A
64 63 eqcomd NFinRRingOLl0Qn0coe1OnQnmulGrpQvar1A=O
65 64 fveq2d NFinRRingOLl0coe1Qn0coe1OnQnmulGrpQvar1A=coe1O
66 65 fveq1d NFinRRingOLl0coe1Qn0coe1OnQnmulGrpQvar1Al=coe1Ol
67 58 66 eqtrd NFinRRingOLl0coe1Qn0IOdecompPMatnQnmulGrpQvar1Al=coe1Ol
68 67 ralrimiva NFinRRingOLl0coe1Qn0IOdecompPMatnQnmulGrpQvar1Al=coe1Ol
69 eqid coe1Qn0IOdecompPMatnQnmulGrpQvar1A=coe1Qn0IOdecompPMatnQnmulGrpQvar1A
70 2 3 69 61 eqcoe1ply1eq ARingQn0IOdecompPMatnQnmulGrpQvar1ALOLl0coe1Qn0IOdecompPMatnQnmulGrpQvar1Al=coe1OlQn0IOdecompPMatnQnmulGrpQvar1A=O
71 51 68 70 sylc NFinRRingOLQn0IOdecompPMatnQnmulGrpQvar1A=O
72 17 71 eqtrd NFinRRingOLTIO=O