Step |
Hyp |
Ref |
Expression |
1 |
|
msubff1.v |
|
2 |
|
msubff1.r |
|
3 |
|
msubff1.s |
|
4 |
|
msubff1.e |
|
5 |
1 2 3 4
|
msubff |
|
6 |
|
mapsspm |
|
7 |
6
|
a1i |
|
8 |
5 7
|
fssresd |
|
9 |
|
eqid |
|
10 |
1 2 9
|
mrsubff |
|
11 |
10
|
ad2antrr |
|
12 |
|
simplrl |
|
13 |
6 12
|
sselid |
|
14 |
11 13
|
ffvelrnd |
|
15 |
|
elmapi |
|
16 |
|
ffn |
|
17 |
14 15 16
|
3syl |
|
18 |
|
simplrr |
|
19 |
6 18
|
sselid |
|
20 |
11 19
|
ffvelrnd |
|
21 |
|
elmapi |
|
22 |
|
ffn |
|
23 |
20 21 22
|
3syl |
|
24 |
|
simplrr |
|
25 |
24
|
fveq1d |
|
26 |
12
|
adantr |
|
27 |
|
elmapi |
|
28 |
26 27
|
syl |
|
29 |
|
ssidd |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
1 30 31
|
mtyf2 |
|
33 |
32
|
ad3antrrr |
|
34 |
|
simplrl |
|
35 |
33 34
|
ffvelrnd |
|
36 |
|
opelxpi |
|
37 |
35 36
|
sylancom |
|
38 |
30 4 2
|
mexval |
|
39 |
37 38
|
eleqtrrdi |
|
40 |
1 2 3 4 9
|
msubval |
|
41 |
28 29 39 40
|
syl3anc |
|
42 |
18
|
adantr |
|
43 |
|
elmapi |
|
44 |
42 43
|
syl |
|
45 |
1 2 3 4 9
|
msubval |
|
46 |
44 29 39 45
|
syl3anc |
|
47 |
25 41 46
|
3eqtr3d |
|
48 |
|
fvex |
|
49 |
|
fvex |
|
50 |
48 49
|
opth |
|
51 |
50
|
simprbi |
|
52 |
47 51
|
syl |
|
53 |
|
fvex |
|
54 |
|
vex |
|
55 |
53 54
|
op2nd |
|
56 |
55
|
fveq2i |
|
57 |
55
|
fveq2i |
|
58 |
52 56 57
|
3eqtr3g |
|
59 |
17 23 58
|
eqfnfvd |
|
60 |
1 2 9
|
mrsubff1 |
|
61 |
|
f1fveq |
|
62 |
60 61
|
sylan |
|
63 |
|
fvres |
|
64 |
|
fvres |
|
65 |
63 64
|
eqeqan12d |
|
66 |
65
|
adantl |
|
67 |
62 66
|
bitr3d |
|
68 |
67
|
adantr |
|
69 |
59 68
|
mpbird |
|
70 |
69
|
fveq1d |
|
71 |
70
|
expr |
|
72 |
71
|
ralrimdva |
|
73 |
|
fvres |
|
74 |
|
fvres |
|
75 |
73 74
|
eqeqan12d |
|
76 |
75
|
adantl |
|
77 |
|
ffn |
|
78 |
|
ffn |
|
79 |
|
eqfnfv |
|
80 |
77 78 79
|
syl2an |
|
81 |
27 43 80
|
syl2an |
|
82 |
81
|
adantl |
|
83 |
72 76 82
|
3imtr4d |
|
84 |
83
|
ralrimivva |
|
85 |
|
dff13 |
|
86 |
8 84 85
|
sylanbrc |
|