Metamath Proof Explorer


Theorem msubff1

Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff1.v V = mVR T
msubff1.r R = mREx T
msubff1.s S = mSubst T
msubff1.e E = mEx T
Assertion msubff1 T mFS S R V : R V 1-1 E E

Proof

Step Hyp Ref Expression
1 msubff1.v V = mVR T
2 msubff1.r R = mREx T
3 msubff1.s S = mSubst T
4 msubff1.e E = mEx T
5 1 2 3 4 msubff T mFS S : R 𝑝𝑚 V E E
6 mapsspm R V R 𝑝𝑚 V
7 6 a1i T mFS R V R 𝑝𝑚 V
8 5 7 fssresd T mFS S R V : R V E E
9 eqid mRSubst T = mRSubst T
10 1 2 9 mrsubff T mFS mRSubst T : R 𝑝𝑚 V R R
11 10 ad2antrr T mFS f R V g R V v V S f = S g mRSubst T : R 𝑝𝑚 V R R
12 simplrl T mFS f R V g R V v V S f = S g f R V
13 6 12 sselid T mFS f R V g R V v V S f = S g f R 𝑝𝑚 V
14 11 13 ffvelrnd T mFS f R V g R V v V S f = S g mRSubst T f R R
15 elmapi mRSubst T f R R mRSubst T f : R R
16 ffn mRSubst T f : R R mRSubst T f Fn R
17 14 15 16 3syl T mFS f R V g R V v V S f = S g mRSubst T f Fn R
18 simplrr T mFS f R V g R V v V S f = S g g R V
19 6 18 sselid T mFS f R V g R V v V S f = S g g R 𝑝𝑚 V
20 11 19 ffvelrnd T mFS f R V g R V v V S f = S g mRSubst T g R R
21 elmapi mRSubst T g R R mRSubst T g : R R
22 ffn mRSubst T g : R R mRSubst T g Fn R
23 20 21 22 3syl T mFS f R V g R V v V S f = S g mRSubst T g Fn R
24 simplrr T mFS f R V g R V v V S f = S g r R S f = S g
25 24 fveq1d T mFS f R V g R V v V S f = S g r R S f mType T v r = S g mType T v r
26 12 adantr T mFS f R V g R V v V S f = S g r R f R V
27 elmapi f R V f : V R
28 26 27 syl T mFS f R V g R V v V S f = S g r R f : V R
29 ssidd T mFS f R V g R V v V S f = S g r R V V
30 eqid mTC T = mTC T
31 eqid mType T = mType T
32 1 30 31 mtyf2 T mFS mType T : V mTC T
33 32 ad3antrrr T mFS f R V g R V v V S f = S g r R mType T : V mTC T
34 simplrl T mFS f R V g R V v V S f = S g r R v V
35 33 34 ffvelrnd T mFS f R V g R V v V S f = S g r R mType T v mTC T
36 opelxpi mType T v mTC T r R mType T v r mTC T × R
37 35 36 sylancom T mFS f R V g R V v V S f = S g r R mType T v r mTC T × R
38 30 4 2 mexval E = mTC T × R
39 37 38 eleqtrrdi T mFS f R V g R V v V S f = S g r R mType T v r E
40 1 2 3 4 9 msubval f : V R V V mType T v r E S f mType T v r = 1 st mType T v r mRSubst T f 2 nd mType T v r
41 28 29 39 40 syl3anc T mFS f R V g R V v V S f = S g r R S f mType T v r = 1 st mType T v r mRSubst T f 2 nd mType T v r
42 18 adantr T mFS f R V g R V v V S f = S g r R g R V
43 elmapi g R V g : V R
44 42 43 syl T mFS f R V g R V v V S f = S g r R g : V R
45 1 2 3 4 9 msubval g : V R V V mType T v r E S g mType T v r = 1 st mType T v r mRSubst T g 2 nd mType T v r
46 44 29 39 45 syl3anc T mFS f R V g R V v V S f = S g r R S g mType T v r = 1 st mType T v r mRSubst T g 2 nd mType T v r
47 25 41 46 3eqtr3d T mFS f R V g R V v V S f = S g r R 1 st mType T v r mRSubst T f 2 nd mType T v r = 1 st mType T v r mRSubst T g 2 nd mType T v r
48 fvex 1 st mType T v r V
49 fvex mRSubst T f 2 nd mType T v r V
50 48 49 opth 1 st mType T v r mRSubst T f 2 nd mType T v r = 1 st mType T v r mRSubst T g 2 nd mType T v r 1 st mType T v r = 1 st mType T v r mRSubst T f 2 nd mType T v r = mRSubst T g 2 nd mType T v r
51 50 simprbi 1 st mType T v r mRSubst T f 2 nd mType T v r = 1 st mType T v r mRSubst T g 2 nd mType T v r mRSubst T f 2 nd mType T v r = mRSubst T g 2 nd mType T v r
52 47 51 syl T mFS f R V g R V v V S f = S g r R mRSubst T f 2 nd mType T v r = mRSubst T g 2 nd mType T v r
53 fvex mType T v V
54 vex r V
55 53 54 op2nd 2 nd mType T v r = r
56 55 fveq2i mRSubst T f 2 nd mType T v r = mRSubst T f r
57 55 fveq2i mRSubst T g 2 nd mType T v r = mRSubst T g r
58 52 56 57 3eqtr3g T mFS f R V g R V v V S f = S g r R mRSubst T f r = mRSubst T g r
59 17 23 58 eqfnfvd T mFS f R V g R V v V S f = S g mRSubst T f = mRSubst T g
60 1 2 9 mrsubff1 T mFS mRSubst T R V : R V 1-1 R R
61 f1fveq mRSubst T R V : R V 1-1 R R f R V g R V mRSubst T R V f = mRSubst T R V g f = g
62 60 61 sylan T mFS f R V g R V mRSubst T R V f = mRSubst T R V g f = g
63 fvres f R V mRSubst T R V f = mRSubst T f
64 fvres g R V mRSubst T R V g = mRSubst T g
65 63 64 eqeqan12d f R V g R V mRSubst T R V f = mRSubst T R V g mRSubst T f = mRSubst T g
66 65 adantl T mFS f R V g R V mRSubst T R V f = mRSubst T R V g mRSubst T f = mRSubst T g
67 62 66 bitr3d T mFS f R V g R V f = g mRSubst T f = mRSubst T g
68 67 adantr T mFS f R V g R V v V S f = S g f = g mRSubst T f = mRSubst T g
69 59 68 mpbird T mFS f R V g R V v V S f = S g f = g
70 69 fveq1d T mFS f R V g R V v V S f = S g f v = g v
71 70 expr T mFS f R V g R V v V S f = S g f v = g v
72 71 ralrimdva T mFS f R V g R V S f = S g v V f v = g v
73 fvres f R V S R V f = S f
74 fvres g R V S R V g = S g
75 73 74 eqeqan12d f R V g R V S R V f = S R V g S f = S g
76 75 adantl T mFS f R V g R V S R V f = S R V g S f = S g
77 ffn f : V R f Fn V
78 ffn g : V R g Fn V
79 eqfnfv f Fn V g Fn V f = g v V f v = g v
80 77 78 79 syl2an f : V R g : V R f = g v V f v = g v
81 27 43 80 syl2an f R V g R V f = g v V f v = g v
82 81 adantl T mFS f R V g R V f = g v V f v = g v
83 72 76 82 3imtr4d T mFS f R V g R V S R V f = S R V g f = g
84 83 ralrimivva T mFS f R V g R V S R V f = S R V g f = g
85 dff13 S R V : R V 1-1 E E S R V : R V E E f R V g R V S R V f = S R V g f = g
86 8 84 85 sylanbrc T mFS S R V : R V 1-1 E E