Metamath Proof Explorer


Theorem msubff1

Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubff1.v V=mVRT
msubff1.r R=mRExT
msubff1.s S=mSubstT
msubff1.e E=mExT
Assertion msubff1 TmFSSRV:RV1-1EE

Proof

Step Hyp Ref Expression
1 msubff1.v V=mVRT
2 msubff1.r R=mRExT
3 msubff1.s S=mSubstT
4 msubff1.e E=mExT
5 1 2 3 4 msubff TmFSS:R𝑝𝑚VEE
6 mapsspm RVR𝑝𝑚V
7 6 a1i TmFSRVR𝑝𝑚V
8 5 7 fssresd TmFSSRV:RVEE
9 eqid mRSubstT=mRSubstT
10 1 2 9 mrsubff TmFSmRSubstT:R𝑝𝑚VRR
11 10 ad2antrr TmFSfRVgRVvVSf=SgmRSubstT:R𝑝𝑚VRR
12 simplrl TmFSfRVgRVvVSf=SgfRV
13 6 12 sselid TmFSfRVgRVvVSf=SgfR𝑝𝑚V
14 11 13 ffvelcdmd TmFSfRVgRVvVSf=SgmRSubstTfRR
15 elmapi mRSubstTfRRmRSubstTf:RR
16 ffn mRSubstTf:RRmRSubstTfFnR
17 14 15 16 3syl TmFSfRVgRVvVSf=SgmRSubstTfFnR
18 simplrr TmFSfRVgRVvVSf=SggRV
19 6 18 sselid TmFSfRVgRVvVSf=SggR𝑝𝑚V
20 11 19 ffvelcdmd TmFSfRVgRVvVSf=SgmRSubstTgRR
21 elmapi mRSubstTgRRmRSubstTg:RR
22 ffn mRSubstTg:RRmRSubstTgFnR
23 20 21 22 3syl TmFSfRVgRVvVSf=SgmRSubstTgFnR
24 simplrr TmFSfRVgRVvVSf=SgrRSf=Sg
25 24 fveq1d TmFSfRVgRVvVSf=SgrRSfmTypeTvr=SgmTypeTvr
26 12 adantr TmFSfRVgRVvVSf=SgrRfRV
27 elmapi fRVf:VR
28 26 27 syl TmFSfRVgRVvVSf=SgrRf:VR
29 ssidd TmFSfRVgRVvVSf=SgrRVV
30 eqid mTCT=mTCT
31 eqid mTypeT=mTypeT
32 1 30 31 mtyf2 TmFSmTypeT:VmTCT
33 32 ad3antrrr TmFSfRVgRVvVSf=SgrRmTypeT:VmTCT
34 simplrl TmFSfRVgRVvVSf=SgrRvV
35 33 34 ffvelcdmd TmFSfRVgRVvVSf=SgrRmTypeTvmTCT
36 opelxpi mTypeTvmTCTrRmTypeTvrmTCT×R
37 35 36 sylancom TmFSfRVgRVvVSf=SgrRmTypeTvrmTCT×R
38 30 4 2 mexval E=mTCT×R
39 37 38 eleqtrrdi TmFSfRVgRVvVSf=SgrRmTypeTvrE
40 1 2 3 4 9 msubval f:VRVVmTypeTvrESfmTypeTvr=1stmTypeTvrmRSubstTf2ndmTypeTvr
41 28 29 39 40 syl3anc TmFSfRVgRVvVSf=SgrRSfmTypeTvr=1stmTypeTvrmRSubstTf2ndmTypeTvr
42 18 adantr TmFSfRVgRVvVSf=SgrRgRV
43 elmapi gRVg:VR
44 42 43 syl TmFSfRVgRVvVSf=SgrRg:VR
45 1 2 3 4 9 msubval g:VRVVmTypeTvrESgmTypeTvr=1stmTypeTvrmRSubstTg2ndmTypeTvr
46 44 29 39 45 syl3anc TmFSfRVgRVvVSf=SgrRSgmTypeTvr=1stmTypeTvrmRSubstTg2ndmTypeTvr
47 25 41 46 3eqtr3d TmFSfRVgRVvVSf=SgrR1stmTypeTvrmRSubstTf2ndmTypeTvr=1stmTypeTvrmRSubstTg2ndmTypeTvr
48 fvex 1stmTypeTvrV
49 fvex mRSubstTf2ndmTypeTvrV
50 48 49 opth 1stmTypeTvrmRSubstTf2ndmTypeTvr=1stmTypeTvrmRSubstTg2ndmTypeTvr1stmTypeTvr=1stmTypeTvrmRSubstTf2ndmTypeTvr=mRSubstTg2ndmTypeTvr
51 50 simprbi 1stmTypeTvrmRSubstTf2ndmTypeTvr=1stmTypeTvrmRSubstTg2ndmTypeTvrmRSubstTf2ndmTypeTvr=mRSubstTg2ndmTypeTvr
52 47 51 syl TmFSfRVgRVvVSf=SgrRmRSubstTf2ndmTypeTvr=mRSubstTg2ndmTypeTvr
53 fvex mTypeTvV
54 vex rV
55 53 54 op2nd 2ndmTypeTvr=r
56 55 fveq2i mRSubstTf2ndmTypeTvr=mRSubstTfr
57 55 fveq2i mRSubstTg2ndmTypeTvr=mRSubstTgr
58 52 56 57 3eqtr3g TmFSfRVgRVvVSf=SgrRmRSubstTfr=mRSubstTgr
59 17 23 58 eqfnfvd TmFSfRVgRVvVSf=SgmRSubstTf=mRSubstTg
60 1 2 9 mrsubff1 TmFSmRSubstTRV:RV1-1RR
61 f1fveq mRSubstTRV:RV1-1RRfRVgRVmRSubstTRVf=mRSubstTRVgf=g
62 60 61 sylan TmFSfRVgRVmRSubstTRVf=mRSubstTRVgf=g
63 fvres fRVmRSubstTRVf=mRSubstTf
64 fvres gRVmRSubstTRVg=mRSubstTg
65 63 64 eqeqan12d fRVgRVmRSubstTRVf=mRSubstTRVgmRSubstTf=mRSubstTg
66 65 adantl TmFSfRVgRVmRSubstTRVf=mRSubstTRVgmRSubstTf=mRSubstTg
67 62 66 bitr3d TmFSfRVgRVf=gmRSubstTf=mRSubstTg
68 67 adantr TmFSfRVgRVvVSf=Sgf=gmRSubstTf=mRSubstTg
69 59 68 mpbird TmFSfRVgRVvVSf=Sgf=g
70 69 fveq1d TmFSfRVgRVvVSf=Sgfv=gv
71 70 expr TmFSfRVgRVvVSf=Sgfv=gv
72 71 ralrimdva TmFSfRVgRVSf=SgvVfv=gv
73 fvres fRVSRVf=Sf
74 fvres gRVSRVg=Sg
75 73 74 eqeqan12d fRVgRVSRVf=SRVgSf=Sg
76 75 adantl TmFSfRVgRVSRVf=SRVgSf=Sg
77 ffn f:VRfFnV
78 ffn g:VRgFnV
79 eqfnfv fFnVgFnVf=gvVfv=gv
80 77 78 79 syl2an f:VRg:VRf=gvVfv=gv
81 27 43 80 syl2an fRVgRVf=gvVfv=gv
82 81 adantl TmFSfRVgRVf=gvVfv=gv
83 72 76 82 3imtr4d TmFSfRVgRVSRVf=SRVgf=g
84 83 ralrimivva TmFSfRVgRVSRVf=SRVgf=g
85 dff13 SRV:RV1-1EESRV:RVEEfRVgRVSRVf=SRVgf=g
86 8 84 85 sylanbrc TmFSSRV:RV1-1EE