Metamath Proof Explorer


Theorem nolt02o

Description: Given A less-than B , equal to B up to X , and undefined at X , then B ( X ) = 2o . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nolt02o ANoBNoXOnAX=BXA<sBAX=BX=2𝑜

Proof

Step Hyp Ref Expression
1 simp11 ANoBNoXOnAX=BXA<sBAX=ANo
2 sltso <sOrNo
3 sonr <sOrNoANo¬A<sA
4 2 3 mpan ANo¬A<sA
5 1 4 syl ANoBNoXOnAX=BXA<sBAX=¬A<sA
6 simp2r ANoBNoXOnAX=BXA<sBAX=A<sB
7 breq2 A=BA<sAA<sB
8 6 7 syl5ibrcom ANoBNoXOnAX=BXA<sBAX=A=BA<sA
9 5 8 mtod ANoBNoXOnAX=BXA<sBAX=¬A=B
10 simpl2l ANoBNoXOnAX=BXA<sBAX=BX=AX=BX
11 simpl11 ANoBNoXOnAX=BXA<sBAX=BX=ANo
12 nofun ANoFunA
13 funrel FunARelA
14 11 12 13 3syl ANoBNoXOnAX=BXA<sBAX=BX=RelA
15 simpl13 ANoBNoXOnAX=BXA<sBAX=BX=XOn
16 simpl3 ANoBNoXOnAX=BXA<sBAX=BX=AX=
17 nolt02olem ANoXOnAX=domAX
18 11 15 16 17 syl3anc ANoBNoXOnAX=BXA<sBAX=BX=domAX
19 relssres RelAdomAXAX=A
20 14 18 19 syl2anc ANoBNoXOnAX=BXA<sBAX=BX=AX=A
21 simpl12 ANoBNoXOnAX=BXA<sBAX=BX=BNo
22 nofun BNoFunB
23 funrel FunBRelB
24 21 22 23 3syl ANoBNoXOnAX=BXA<sBAX=BX=RelB
25 simpr ANoBNoXOnAX=BXA<sBAX=BX=BX=
26 nolt02olem BNoXOnBX=domBX
27 21 15 25 26 syl3anc ANoBNoXOnAX=BXA<sBAX=BX=domBX
28 relssres RelBdomBXBX=B
29 24 27 28 syl2anc ANoBNoXOnAX=BXA<sBAX=BX=BX=B
30 10 20 29 3eqtr3d ANoBNoXOnAX=BXA<sBAX=BX=A=B
31 9 30 mtand ANoBNoXOnAX=BXA<sBAX=¬BX=
32 simp12 ANoBNoXOnAX=BXA<sBAX=BNo
33 sltval ANoBNoA<sBxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
34 1 32 33 syl2anc ANoBNoXOnAX=BXA<sBAX=A<sBxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
35 6 34 mpbid ANoBNoXOnAX=BXA<sBAX=xOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
36 df-an yxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx¬yxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx
37 36 rexbii xOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜BxxOn¬yxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx
38 rexnal xOn¬yxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx¬xOnyxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx
39 37 38 bitri xOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx¬xOnyxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx
40 35 39 sylib ANoBNoXOnAX=BXA<sBAX=¬xOnyxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx
41 1oex 1𝑜V
42 41 prid1 1𝑜1𝑜2𝑜
43 42 nosgnn0i 1𝑜
44 43 neii ¬=1𝑜
45 simpll3 ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByAX=
46 simplr ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByBX=1𝑜
47 eqeq1 AX=BXAX=BX=
48 47 anbi1d AX=BXAX=BX=1𝑜BX=BX=1𝑜
49 eqtr2 BX=BX=1𝑜=1𝑜
50 48 49 syl6bi AX=BXAX=BX=1𝑜=1𝑜
51 50 com12 AX=BX=1𝑜AX=BX=1𝑜
52 45 46 51 syl2anc ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByAX=BX=1𝑜
53 44 52 mtoi ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=By¬AX=BX
54 simpr ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByXxXx
55 simplrr ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByXxyxAy=By
56 fveq2 y=XAy=AX
57 fveq2 y=XBy=BX
58 56 57 eqeq12d y=XAy=ByAX=BX
59 58 rspcv XxyxAy=ByAX=BX
60 54 55 59 sylc ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByXxAX=BX
61 53 60 mtand ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=By¬Xx
62 simprl ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByxOn
63 simpl13 ANoBNoXOnAX=BXA<sBAX=BX=1𝑜XOn
64 63 adantr ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByXOn
65 ontri1 xOnXOnxX¬Xx
66 62 64 65 syl2anc ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByxX¬Xx
67 61 66 mpbird ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByxX
68 onsseleq xOnXOnxXxXx=X
69 62 64 68 syl2anc ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByxXxXx=X
70 eqtr2 AXx=AXx=1𝑜=1𝑜
71 70 ancoms AXx=1𝑜AXx==1𝑜
72 44 71 mto ¬AXx=1𝑜AXx=
73 df-1o 1𝑜=suc
74 df-2o 2𝑜=suc1𝑜
75 73 74 eqeq12i 1𝑜=2𝑜suc=suc1𝑜
76 0elon On
77 1on 1𝑜On
78 suc11 On1𝑜Onsuc=suc1𝑜=1𝑜
79 76 77 78 mp2an suc=suc1𝑜=1𝑜
80 75 79 bitri 1𝑜=2𝑜=1𝑜
81 43 80 nemtbir ¬1𝑜=2𝑜
82 eqtr2 AXx=1𝑜AXx=2𝑜1𝑜=2𝑜
83 81 82 mto ¬AXx=1𝑜AXx=2𝑜
84 2on 2𝑜On
85 84 elexi 2𝑜V
86 85 prid2 2𝑜1𝑜2𝑜
87 86 nosgnn0i 2𝑜
88 87 neii ¬=2𝑜
89 eqtr2 AXx=AXx=2𝑜=2𝑜
90 88 89 mto ¬AXx=AXx=2𝑜
91 72 83 90 3pm3.2i ¬AXx=1𝑜AXx=¬AXx=1𝑜AXx=2𝑜¬AXx=AXx=2𝑜
92 fvex AXxV
93 92 92 brtp AXx1𝑜1𝑜2𝑜2𝑜AXxAXx=1𝑜AXx=AXx=1𝑜AXx=2𝑜AXx=AXx=2𝑜
94 3oran AXx=1𝑜AXx=AXx=1𝑜AXx=2𝑜AXx=AXx=2𝑜¬¬AXx=1𝑜AXx=¬AXx=1𝑜AXx=2𝑜¬AXx=AXx=2𝑜
95 93 94 bitri AXx1𝑜1𝑜2𝑜2𝑜AXx¬¬AXx=1𝑜AXx=¬AXx=1𝑜AXx=2𝑜¬AXx=AXx=2𝑜
96 95 con2bii ¬AXx=1𝑜AXx=¬AXx=1𝑜AXx=2𝑜¬AXx=AXx=2𝑜¬AXx1𝑜1𝑜2𝑜2𝑜AXx
97 91 96 mpbi ¬AXx1𝑜1𝑜2𝑜2𝑜AXx
98 simpl2l ANoBNoXOnAX=BXA<sBAX=BX=1𝑜AX=BX
99 98 adantr ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByAX=BX
100 99 fveq1d ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByAXx=BXx
101 100 breq2d ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByAXx1𝑜1𝑜2𝑜2𝑜AXxAXx1𝑜1𝑜2𝑜2𝑜BXx
102 97 101 mtbii ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=By¬AXx1𝑜1𝑜2𝑜2𝑜BXx
103 fvres xXAXx=Ax
104 fvres xXBXx=Bx
105 103 104 breq12d xXAXx1𝑜1𝑜2𝑜2𝑜BXxAx1𝑜1𝑜2𝑜2𝑜Bx
106 105 notbid xX¬AXx1𝑜1𝑜2𝑜2𝑜BXx¬Ax1𝑜1𝑜2𝑜2𝑜Bx
107 102 106 syl5ibcom ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByxX¬Ax1𝑜1𝑜2𝑜2𝑜Bx
108 44 intnanr ¬=1𝑜1𝑜=
109 44 intnanr ¬=1𝑜1𝑜=2𝑜
110 81 intnan ¬=1𝑜=2𝑜
111 108 109 110 3pm3.2i ¬=1𝑜1𝑜=¬=1𝑜1𝑜=2𝑜¬=1𝑜=2𝑜
112 0ex V
113 112 41 brtp 1𝑜1𝑜2𝑜2𝑜1𝑜=1𝑜1𝑜==1𝑜1𝑜=2𝑜=1𝑜=2𝑜
114 3oran =1𝑜1𝑜==1𝑜1𝑜=2𝑜=1𝑜=2𝑜¬¬=1𝑜1𝑜=¬=1𝑜1𝑜=2𝑜¬=1𝑜=2𝑜
115 113 114 bitri 1𝑜1𝑜2𝑜2𝑜1𝑜¬¬=1𝑜1𝑜=¬=1𝑜1𝑜=2𝑜¬=1𝑜=2𝑜
116 115 con2bii ¬=1𝑜1𝑜=¬=1𝑜1𝑜=2𝑜¬=1𝑜=2𝑜¬1𝑜1𝑜2𝑜2𝑜1𝑜
117 111 116 mpbi ¬1𝑜1𝑜2𝑜2𝑜1𝑜
118 45 46 breq12d ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByAX1𝑜1𝑜2𝑜2𝑜BX1𝑜1𝑜2𝑜2𝑜1𝑜
119 117 118 mtbiri ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=By¬AX1𝑜1𝑜2𝑜2𝑜BX
120 fveq2 x=XAx=AX
121 fveq2 x=XBx=BX
122 120 121 breq12d x=XAx1𝑜1𝑜2𝑜2𝑜BxAX1𝑜1𝑜2𝑜2𝑜BX
123 122 notbid x=X¬Ax1𝑜1𝑜2𝑜2𝑜Bx¬AX1𝑜1𝑜2𝑜2𝑜BX
124 119 123 syl5ibrcom ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=Byx=X¬Ax1𝑜1𝑜2𝑜2𝑜Bx
125 107 124 jaod ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByxXx=X¬Ax1𝑜1𝑜2𝑜2𝑜Bx
126 69 125 sylbid ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=ByxX¬Ax1𝑜1𝑜2𝑜2𝑜Bx
127 67 126 mpd ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx
128 127 expr ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx
129 128 ralrimiva ANoBNoXOnAX=BXA<sBAX=BX=1𝑜xOnyxAy=By¬Ax1𝑜1𝑜2𝑜2𝑜Bx
130 40 129 mtand ANoBNoXOnAX=BXA<sBAX=¬BX=1𝑜
131 nofv BNoBX=BX=1𝑜BX=2𝑜
132 32 131 syl ANoBNoXOnAX=BXA<sBAX=BX=BX=1𝑜BX=2𝑜
133 3orrot BX=BX=1𝑜BX=2𝑜BX=1𝑜BX=2𝑜BX=
134 3orrot BX=1𝑜BX=2𝑜BX=BX=2𝑜BX=BX=1𝑜
135 133 134 bitri BX=BX=1𝑜BX=2𝑜BX=2𝑜BX=BX=1𝑜
136 132 135 sylib ANoBNoXOnAX=BXA<sBAX=BX=2𝑜BX=BX=1𝑜
137 31 130 136 ecase23d ANoBNoXOnAX=BXA<sBAX=BX=2𝑜