Metamath Proof Explorer


Theorem nolt02o

Description: Given A less than B , equal to B up to X , and undefined at X , then B ( X ) = 2o . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nolt02o A No B No X On A X = B X A < s B A X = B X = 2 𝑜

Proof

Step Hyp Ref Expression
1 simp11 A No B No X On A X = B X A < s B A X = A No
2 sltso < s Or No
3 sonr < s Or No A No ¬ A < s A
4 2 3 mpan A No ¬ A < s A
5 1 4 syl A No B No X On A X = B X A < s B A X = ¬ A < s A
6 simp2r A No B No X On A X = B X A < s B A X = A < s B
7 breq2 A = B A < s A A < s B
8 6 7 syl5ibrcom A No B No X On A X = B X A < s B A X = A = B A < s A
9 5 8 mtod A No B No X On A X = B X A < s B A X = ¬ A = B
10 simpl2l A No B No X On A X = B X A < s B A X = B X = A X = B X
11 simpl11 A No B No X On A X = B X A < s B A X = B X = A No
12 nofun A No Fun A
13 funrel Fun A Rel A
14 11 12 13 3syl A No B No X On A X = B X A < s B A X = B X = Rel A
15 simpl13 A No B No X On A X = B X A < s B A X = B X = X On
16 simpl3 A No B No X On A X = B X A < s B A X = B X = A X =
17 nolt02olem A No X On A X = dom A X
18 11 15 16 17 syl3anc A No B No X On A X = B X A < s B A X = B X = dom A X
19 relssres Rel A dom A X A X = A
20 14 18 19 syl2anc A No B No X On A X = B X A < s B A X = B X = A X = A
21 simpl12 A No B No X On A X = B X A < s B A X = B X = B No
22 nofun B No Fun B
23 funrel Fun B Rel B
24 21 22 23 3syl A No B No X On A X = B X A < s B A X = B X = Rel B
25 simpr A No B No X On A X = B X A < s B A X = B X = B X =
26 nolt02olem B No X On B X = dom B X
27 21 15 25 26 syl3anc A No B No X On A X = B X A < s B A X = B X = dom B X
28 relssres Rel B dom B X B X = B
29 24 27 28 syl2anc A No B No X On A X = B X A < s B A X = B X = B X = B
30 10 20 29 3eqtr3d A No B No X On A X = B X A < s B A X = B X = A = B
31 9 30 mtand A No B No X On A X = B X A < s B A X = ¬ B X =
32 simp12 A No B No X On A X = B X A < s B A X = B No
33 sltval A No B No A < s B x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
34 1 32 33 syl2anc A No B No X On A X = B X A < s B A X = A < s B x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
35 6 34 mpbid A No B No X On A X = B X A < s B A X = x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
36 df-an y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x ¬ y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
37 36 rexbii x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x x On ¬ y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
38 rexnal x On ¬ y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x ¬ x On y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
39 37 38 bitri x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x ¬ x On y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
40 35 39 sylib A No B No X On A X = B X A < s B A X = ¬ x On y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
41 1oex 1 𝑜 V
42 41 prid1 1 𝑜 1 𝑜 2 𝑜
43 42 nosgnn0i 1 𝑜
44 43 neii ¬ = 1 𝑜
45 simpll3 A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y A X =
46 simplr A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y B X = 1 𝑜
47 eqeq1 A X = B X A X = B X =
48 47 anbi1d A X = B X A X = B X = 1 𝑜 B X = B X = 1 𝑜
49 eqtr2 B X = B X = 1 𝑜 = 1 𝑜
50 48 49 syl6bi A X = B X A X = B X = 1 𝑜 = 1 𝑜
51 50 com12 A X = B X = 1 𝑜 A X = B X = 1 𝑜
52 45 46 51 syl2anc A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y A X = B X = 1 𝑜
53 44 52 mtoi A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y ¬ A X = B X
54 simpr A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y X x X x
55 simplrr A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y X x y x A y = B y
56 fveq2 y = X A y = A X
57 fveq2 y = X B y = B X
58 56 57 eqeq12d y = X A y = B y A X = B X
59 58 rspcv X x y x A y = B y A X = B X
60 54 55 59 sylc A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y X x A X = B X
61 53 60 mtand A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y ¬ X x
62 simprl A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y x On
63 simpl13 A No B No X On A X = B X A < s B A X = B X = 1 𝑜 X On
64 63 adantr A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y X On
65 ontri1 x On X On x X ¬ X x
66 62 64 65 syl2anc A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y x X ¬ X x
67 61 66 mpbird A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y x X
68 onsseleq x On X On x X x X x = X
69 62 64 68 syl2anc A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y x X x X x = X
70 eqtr2 A X x = A X x = 1 𝑜 = 1 𝑜
71 70 ancoms A X x = 1 𝑜 A X x = = 1 𝑜
72 44 71 mto ¬ A X x = 1 𝑜 A X x =
73 df-1o 1 𝑜 = suc
74 df-2o 2 𝑜 = suc 1 𝑜
75 73 74 eqeq12i 1 𝑜 = 2 𝑜 suc = suc 1 𝑜
76 0elon On
77 1on 1 𝑜 On
78 suc11 On 1 𝑜 On suc = suc 1 𝑜 = 1 𝑜
79 76 77 78 mp2an suc = suc 1 𝑜 = 1 𝑜
80 75 79 bitri 1 𝑜 = 2 𝑜 = 1 𝑜
81 43 80 nemtbir ¬ 1 𝑜 = 2 𝑜
82 eqtr2 A X x = 1 𝑜 A X x = 2 𝑜 1 𝑜 = 2 𝑜
83 81 82 mto ¬ A X x = 1 𝑜 A X x = 2 𝑜
84 2on 2 𝑜 On
85 84 elexi 2 𝑜 V
86 85 prid2 2 𝑜 1 𝑜 2 𝑜
87 86 nosgnn0i 2 𝑜
88 87 neii ¬ = 2 𝑜
89 eqtr2 A X x = A X x = 2 𝑜 = 2 𝑜
90 88 89 mto ¬ A X x = A X x = 2 𝑜
91 72 83 90 3pm3.2i ¬ A X x = 1 𝑜 A X x = ¬ A X x = 1 𝑜 A X x = 2 𝑜 ¬ A X x = A X x = 2 𝑜
92 fvex A X x V
93 92 92 brtp A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A X x A X x = 1 𝑜 A X x = A X x = 1 𝑜 A X x = 2 𝑜 A X x = A X x = 2 𝑜
94 3oran A X x = 1 𝑜 A X x = A X x = 1 𝑜 A X x = 2 𝑜 A X x = A X x = 2 𝑜 ¬ ¬ A X x = 1 𝑜 A X x = ¬ A X x = 1 𝑜 A X x = 2 𝑜 ¬ A X x = A X x = 2 𝑜
95 93 94 bitri A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A X x ¬ ¬ A X x = 1 𝑜 A X x = ¬ A X x = 1 𝑜 A X x = 2 𝑜 ¬ A X x = A X x = 2 𝑜
96 95 con2bii ¬ A X x = 1 𝑜 A X x = ¬ A X x = 1 𝑜 A X x = 2 𝑜 ¬ A X x = A X x = 2 𝑜 ¬ A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A X x
97 91 96 mpbi ¬ A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A X x
98 simpl2l A No B No X On A X = B X A < s B A X = B X = 1 𝑜 A X = B X
99 98 adantr A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y A X = B X
100 99 fveq1d A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y A X x = B X x
101 100 breq2d A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A X x A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B X x
102 97 101 mtbii A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y ¬ A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B X x
103 fvres x X A X x = A x
104 fvres x X B X x = B x
105 103 104 breq12d x X A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B X x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
106 105 notbid x X ¬ A X x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B X x ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
107 102 106 syl5ibcom A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y x X ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
108 44 intnanr ¬ = 1 𝑜 1 𝑜 =
109 44 intnanr ¬ = 1 𝑜 1 𝑜 = 2 𝑜
110 81 intnan ¬ = 1 𝑜 = 2 𝑜
111 108 109 110 3pm3.2i ¬ = 1 𝑜 1 𝑜 = ¬ = 1 𝑜 1 𝑜 = 2 𝑜 ¬ = 1 𝑜 = 2 𝑜
112 0ex V
113 112 41 brtp 1 𝑜 1 𝑜 2 𝑜 2 𝑜 1 𝑜 = 1 𝑜 1 𝑜 = = 1 𝑜 1 𝑜 = 2 𝑜 = 1 𝑜 = 2 𝑜
114 3oran = 1 𝑜 1 𝑜 = = 1 𝑜 1 𝑜 = 2 𝑜 = 1 𝑜 = 2 𝑜 ¬ ¬ = 1 𝑜 1 𝑜 = ¬ = 1 𝑜 1 𝑜 = 2 𝑜 ¬ = 1 𝑜 = 2 𝑜
115 113 114 bitri 1 𝑜 1 𝑜 2 𝑜 2 𝑜 1 𝑜 ¬ ¬ = 1 𝑜 1 𝑜 = ¬ = 1 𝑜 1 𝑜 = 2 𝑜 ¬ = 1 𝑜 = 2 𝑜
116 115 con2bii ¬ = 1 𝑜 1 𝑜 = ¬ = 1 𝑜 1 𝑜 = 2 𝑜 ¬ = 1 𝑜 = 2 𝑜 ¬ 1 𝑜 1 𝑜 2 𝑜 2 𝑜 1 𝑜
117 111 116 mpbi ¬ 1 𝑜 1 𝑜 2 𝑜 2 𝑜 1 𝑜
118 45 46 breq12d A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y A X 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B X 1 𝑜 1 𝑜 2 𝑜 2 𝑜 1 𝑜
119 117 118 mtbiri A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y ¬ A X 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B X
120 fveq2 x = X A x = A X
121 fveq2 x = X B x = B X
122 120 121 breq12d x = X A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x A X 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B X
123 122 notbid x = X ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x ¬ A X 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B X
124 119 123 syl5ibrcom A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y x = X ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
125 107 124 jaod A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y x X x = X ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
126 69 125 sylbid A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y x X ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
127 67 126 mpd A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
128 127 expr A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
129 128 ralrimiva A No B No X On A X = B X A < s B A X = B X = 1 𝑜 x On y x A y = B y ¬ A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
130 40 129 mtand A No B No X On A X = B X A < s B A X = ¬ B X = 1 𝑜
131 nofv B No B X = B X = 1 𝑜 B X = 2 𝑜
132 32 131 syl A No B No X On A X = B X A < s B A X = B X = B X = 1 𝑜 B X = 2 𝑜
133 3orrot B X = B X = 1 𝑜 B X = 2 𝑜 B X = 1 𝑜 B X = 2 𝑜 B X =
134 3orrot B X = 1 𝑜 B X = 2 𝑜 B X = B X = 2 𝑜 B X = B X = 1 𝑜
135 133 134 bitri B X = B X = 1 𝑜 B X = 2 𝑜 B X = 2 𝑜 B X = B X = 1 𝑜
136 132 135 sylib A No B No X On A X = B X A < s B A X = B X = 2 𝑜 B X = B X = 1 𝑜
137 31 130 136 ecase23d A No B No X On A X = B X A < s B A X = B X = 2 𝑜