| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwwlk.v |
|
| 2 |
|
numclwwlk.q |
|
| 3 |
|
numclwwlk.h |
|
| 4 |
|
numclwwlk.r |
|
| 5 |
|
eleq1w |
|
| 6 |
|
fveq2 |
|
| 7 |
|
oveq1 |
|
| 8 |
6 7
|
eqeq12d |
|
| 9 |
5 8
|
imbi12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
1 2 3 4
|
numclwlk2lem2fv |
|
| 12 |
10 11
|
chvarvv |
|
| 13 |
12
|
3adant1 |
|
| 14 |
13
|
imp |
|
| 15 |
1 2 3 4
|
numclwlk2lem2f |
|
| 16 |
15
|
ffvelcdmda |
|
| 17 |
14 16
|
eqeltrrd |
|
| 18 |
17
|
ralrimiva |
|
| 19 |
1 2 3
|
numclwwlk2lem1 |
|
| 20 |
19
|
imp |
|
| 21 |
1 2
|
numclwwlkovq |
|
| 22 |
21
|
eleq2d |
|
| 23 |
22
|
3adant1 |
|
| 24 |
|
fveq1 |
|
| 25 |
24
|
eqeq1d |
|
| 26 |
|
fveq2 |
|
| 27 |
26
|
neeq1d |
|
| 28 |
25 27
|
anbi12d |
|
| 29 |
28
|
elrab |
|
| 30 |
23 29
|
bitrdi |
|
| 31 |
|
wwlknbp1 |
|
| 32 |
|
3simpc |
|
| 33 |
31 32
|
syl |
|
| 34 |
1
|
wrdeqi |
|
| 35 |
34
|
eleq2i |
|
| 36 |
35
|
anbi1i |
|
| 37 |
33 36
|
sylibr |
|
| 38 |
|
simpll |
|
| 39 |
|
nnnn0 |
|
| 40 |
|
2nn |
|
| 41 |
40
|
a1i |
|
| 42 |
41
|
nnzd |
|
| 43 |
|
nn0pzuz |
|
| 44 |
39 42 43
|
syl2anc |
|
| 45 |
3
|
numclwwlkovh |
|
| 46 |
44 45
|
sylan2 |
|
| 47 |
46
|
eleq2d |
|
| 48 |
|
fveq1 |
|
| 49 |
48
|
eqeq1d |
|
| 50 |
|
fveq1 |
|
| 51 |
50 48
|
neeq12d |
|
| 52 |
49 51
|
anbi12d |
|
| 53 |
52
|
elrab |
|
| 54 |
47 53
|
bitrdi |
|
| 55 |
54
|
3adant1 |
|
| 56 |
55
|
adantl |
|
| 57 |
1
|
clwwlknbp |
|
| 58 |
|
lencl |
|
| 59 |
|
simprr |
|
| 60 |
|
df-2 |
|
| 61 |
60
|
a1i |
|
| 62 |
61
|
oveq2d |
|
| 63 |
|
nncn |
|
| 64 |
|
1cnd |
|
| 65 |
63 64 64
|
addassd |
|
| 66 |
62 65
|
eqtr4d |
|
| 67 |
66
|
adantl |
|
| 68 |
67
|
eqeq2d |
|
| 69 |
68
|
biimpcd |
|
| 70 |
69
|
adantr |
|
| 71 |
70
|
impcom |
|
| 72 |
|
oveq1 |
|
| 73 |
72
|
ad3antlr |
|
| 74 |
71 73
|
eqtr4d |
|
| 75 |
59 74
|
jca |
|
| 76 |
75
|
exp31 |
|
| 77 |
58 76
|
sylan |
|
| 78 |
77
|
com12 |
|
| 79 |
78
|
3ad2ant3 |
|
| 80 |
79
|
impcom |
|
| 81 |
80
|
com12 |
|
| 82 |
81
|
ancoms |
|
| 83 |
57 82
|
syl |
|
| 84 |
83
|
adantr |
|
| 85 |
84
|
com12 |
|
| 86 |
56 85
|
sylbid |
|
| 87 |
86
|
ralrimiv |
|
| 88 |
38 87
|
jca |
|
| 89 |
88
|
ex |
|
| 90 |
37 89
|
syl |
|
| 91 |
90
|
adantr |
|
| 92 |
91
|
imp |
|
| 93 |
|
nfcv |
|
| 94 |
|
nfmpo1 |
|
| 95 |
3 94
|
nfcxfr |
|
| 96 |
|
nfcv |
|
| 97 |
93 95 96
|
nfov |
|
| 98 |
97
|
reuccatpfxs1 |
|
| 99 |
92 98
|
syl |
|
| 100 |
99
|
imp |
|
| 101 |
31
|
simp3d |
|
| 102 |
101
|
eqcomd |
|
| 103 |
102
|
ad4antr |
|
| 104 |
103
|
oveq2d |
|
| 105 |
104
|
eqeq2d |
|
| 106 |
105
|
reubidva |
|
| 107 |
100 106
|
mpbird |
|
| 108 |
107
|
exp31 |
|
| 109 |
108
|
com12 |
|
| 110 |
30 109
|
sylbid |
|
| 111 |
110
|
imp |
|
| 112 |
20 111
|
mpd |
|
| 113 |
112
|
ralrimiva |
|
| 114 |
4
|
f1ompt |
|
| 115 |
18 113 114
|
sylanbrc |
|