| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extwwlkfab.v |
|
| 2 |
|
extwwlkfab.c |
|
| 3 |
|
extwwlkfab.f |
|
| 4 |
|
numclwwlk.t |
|
| 5 |
1 2 3 4
|
numclwwlk1lem2f |
|
| 6 |
1 2 3 4
|
numclwwlk1lem2fv |
|
| 7 |
6
|
ad2antrl |
|
| 8 |
1 2 3 4
|
numclwwlk1lem2fv |
|
| 9 |
8
|
ad2antll |
|
| 10 |
7 9
|
eqeq12d |
|
| 11 |
|
ovex |
|
| 12 |
|
fvex |
|
| 13 |
11 12
|
opth |
|
| 14 |
|
uzuzle23 |
|
| 15 |
2
|
2clwwlkel |
|
| 16 |
|
isclwwlknon |
|
| 17 |
16
|
anbi1i |
|
| 18 |
15 17
|
bitrdi |
|
| 19 |
2
|
2clwwlkel |
|
| 20 |
|
isclwwlknon |
|
| 21 |
20
|
anbi1i |
|
| 22 |
19 21
|
bitrdi |
|
| 23 |
18 22
|
anbi12d |
|
| 24 |
14 23
|
sylan2 |
|
| 25 |
24
|
3adant1 |
|
| 26 |
1
|
clwwlknbp |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simpr |
|
| 32 |
29
|
eqcomd |
|
| 33 |
32
|
adantr |
|
| 34 |
31 33
|
eqtrd |
|
| 35 |
28 30 34
|
jca32 |
|
| 36 |
1
|
clwwlknbp |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
adantr |
|
| 39 |
|
simpr |
|
| 40 |
39
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
39
|
eqcomd |
|
| 43 |
42
|
adantr |
|
| 44 |
41 43
|
eqtrd |
|
| 45 |
38 40 44
|
jca32 |
|
| 46 |
|
eqtr3 |
|
| 47 |
46
|
expcom |
|
| 48 |
47
|
ad2antlr |
|
| 49 |
48
|
com12 |
|
| 50 |
49
|
ad2antlr |
|
| 51 |
50
|
imp |
|
| 52 |
35 45 51
|
syl2an |
|
| 53 |
52
|
3ad2ant2 |
|
| 54 |
27
|
simprd |
|
| 55 |
54
|
adantr |
|
| 56 |
55
|
eqcomd |
|
| 57 |
56
|
adantr |
|
| 58 |
57
|
oveq1d |
|
| 59 |
58
|
oveq2d |
|
| 60 |
58
|
oveq2d |
|
| 61 |
59 60
|
eqeq12d |
|
| 62 |
61
|
biimpcd |
|
| 63 |
62
|
adantr |
|
| 64 |
63
|
impcom |
|
| 65 |
55
|
oveq1d |
|
| 66 |
65
|
fveq2d |
|
| 67 |
66 31
|
eqtrd |
|
| 68 |
67
|
adantr |
|
| 69 |
41
|
eqcomd |
|
| 70 |
69
|
adantl |
|
| 71 |
58
|
fveq2d |
|
| 72 |
70 71
|
eqtrd |
|
| 73 |
68 72
|
eqtrd |
|
| 74 |
73
|
adantr |
|
| 75 |
|
lsw |
|
| 76 |
|
fvoveq1 |
|
| 77 |
75 76
|
sylan9eq |
|
| 78 |
26 77
|
syl |
|
| 79 |
78
|
eqcomd |
|
| 80 |
79
|
ad3antrrr |
|
| 81 |
|
lsw |
|
| 82 |
81
|
adantr |
|
| 83 |
|
oveq1 |
|
| 84 |
83
|
eqcoms |
|
| 85 |
84
|
fveq2d |
|
| 86 |
85
|
eqeq2d |
|
| 87 |
86
|
adantl |
|
| 88 |
82 87
|
mpbird |
|
| 89 |
36 88
|
syl |
|
| 90 |
89
|
eqcomd |
|
| 91 |
90
|
adantr |
|
| 92 |
91
|
ad2antrl |
|
| 93 |
80 92
|
eqeq12d |
|
| 94 |
93
|
biimpd |
|
| 95 |
94
|
adantld |
|
| 96 |
95
|
imp |
|
| 97 |
64 74 96
|
3jca |
|
| 98 |
97
|
3adant1 |
|
| 99 |
1
|
clwwlknwrd |
|
| 100 |
99
|
ad3antrrr |
|
| 101 |
100
|
3ad2ant2 |
|
| 102 |
1
|
clwwlknwrd |
|
| 103 |
102
|
adantr |
|
| 104 |
103
|
ad2antrl |
|
| 105 |
104
|
3ad2ant2 |
|
| 106 |
|
clwwlknlen |
|
| 107 |
|
eluz2b1 |
|
| 108 |
|
breq2 |
|
| 109 |
108
|
eqcoms |
|
| 110 |
109
|
biimpcd |
|
| 111 |
107 110
|
simplbiim |
|
| 112 |
14 106 111
|
syl2imc |
|
| 113 |
112
|
ad3antrrr |
|
| 114 |
113
|
impcom |
|
| 115 |
114
|
3adant3 |
|
| 116 |
|
2swrd2eqwrdeq |
|
| 117 |
101 105 115 116
|
syl3anc |
|
| 118 |
53 98 117
|
mpbir2and |
|
| 119 |
118
|
3exp |
|
| 120 |
119
|
3ad2ant3 |
|
| 121 |
25 120
|
sylbid |
|
| 122 |
121
|
imp |
|
| 123 |
13 122
|
biimtrid |
|
| 124 |
10 123
|
sylbid |
|
| 125 |
124
|
ralrimivva |
|
| 126 |
|
dff13 |
|
| 127 |
5 125 126
|
sylanbrc |
|