| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwwlk.v |
|
| 2 |
|
numclwwlk.q |
|
| 3 |
|
numclwwlk.h |
|
| 4 |
1 2
|
numclwwlkovq |
|
| 5 |
4
|
3adant1 |
|
| 6 |
5
|
eleq2d |
|
| 7 |
|
fveq1 |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
neeq1d |
|
| 11 |
8 10
|
anbi12d |
|
| 12 |
11
|
elrab |
|
| 13 |
6 12
|
bitrdi |
|
| 14 |
|
simpl1 |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
wwlknp |
|
| 17 |
|
peano2nn |
|
| 18 |
17
|
adantl |
|
| 19 |
|
simpl |
|
| 20 |
18 19
|
jca |
|
| 21 |
20
|
ex |
|
| 22 |
21
|
3adant3 |
|
| 23 |
16 22
|
syl |
|
| 24 |
|
lswlgt0cl |
|
| 25 |
23 24
|
syl6 |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
com12 |
|
| 28 |
27
|
3ad2ant3 |
|
| 29 |
28
|
imp |
|
| 30 |
|
eleq1 |
|
| 31 |
30
|
biimprd |
|
| 32 |
31
|
ad2antrl |
|
| 33 |
32
|
com12 |
|
| 34 |
33
|
3ad2ant2 |
|
| 35 |
34
|
imp |
|
| 36 |
|
neeq2 |
|
| 37 |
36
|
eqcoms |
|
| 38 |
37
|
biimpa |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
adantl |
|
| 41 |
29 35 40
|
3jca |
|
| 42 |
1 15
|
frcond2 |
|
| 43 |
14 41 42
|
sylc |
|
| 44 |
|
simpl |
|
| 45 |
44
|
ad2antlr |
|
| 46 |
|
simpr |
|
| 47 |
|
nnnn0 |
|
| 48 |
47
|
3ad2ant3 |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
45 46 49
|
3jca |
|
| 51 |
1 15
|
wwlksext2clwwlk |
|
| 52 |
51
|
3adant3 |
|
| 53 |
52
|
imp |
|
| 54 |
50 53
|
sylan |
|
| 55 |
1
|
wwlknbp |
|
| 56 |
55
|
simp3d |
|
| 57 |
56
|
ad2antrl |
|
| 58 |
57
|
ad2antrr |
|
| 59 |
46
|
adantr |
|
| 60 |
|
2z |
|
| 61 |
|
nn0pzuz |
|
| 62 |
47 60 61
|
sylancl |
|
| 63 |
62
|
3ad2ant3 |
|
| 64 |
63
|
ad3antrrr |
|
| 65 |
|
simpr |
|
| 66 |
1 15
|
clwwlkext2edg |
|
| 67 |
58 59 64 65 66
|
syl31anc |
|
| 68 |
54 67
|
impbida |
|
| 69 |
46 1
|
eleqtrdi |
|
| 70 |
38
|
anim2i |
|
| 71 |
70
|
ad2antlr |
|
| 72 |
71
|
simprd |
|
| 73 |
|
numclwwlk2lem1lem |
|
| 74 |
69 45 72 73
|
syl3anc |
|
| 75 |
|
eqeq2 |
|
| 76 |
75
|
eqcoms |
|
| 77 |
76
|
ad2antrl |
|
| 78 |
77
|
ad2antlr |
|
| 79 |
74
|
simpld |
|
| 80 |
79
|
neeq2d |
|
| 81 |
78 80
|
anbi12d |
|
| 82 |
74 81
|
mpbird |
|
| 83 |
|
nncn |
|
| 84 |
|
2cnd |
|
| 85 |
83 84
|
pncand |
|
| 86 |
85
|
3ad2ant3 |
|
| 87 |
86
|
ad2antrr |
|
| 88 |
87
|
fveq2d |
|
| 89 |
88
|
neeq1d |
|
| 90 |
89
|
anbi2d |
|
| 91 |
82 90
|
mpbird |
|
| 92 |
91
|
biantrud |
|
| 93 |
62
|
anim2i |
|
| 94 |
93
|
3adant1 |
|
| 95 |
94
|
ad2antrr |
|
| 96 |
3
|
numclwwlkovh |
|
| 97 |
95 96
|
syl |
|
| 98 |
97
|
eleq2d |
|
| 99 |
|
fveq1 |
|
| 100 |
99
|
eqeq1d |
|
| 101 |
|
fveq1 |
|
| 102 |
101 99
|
neeq12d |
|
| 103 |
100 102
|
anbi12d |
|
| 104 |
103
|
elrab |
|
| 105 |
98 104
|
bitr2di |
|
| 106 |
68 92 105
|
3bitrd |
|
| 107 |
106
|
reubidva |
|
| 108 |
43 107
|
mpbid |
|
| 109 |
108
|
ex |
|
| 110 |
13 109
|
sylbid |
|