Metamath Proof Explorer


Theorem ordtbaslem

Description: Lemma for ordtbas . In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses ordtval.1 X=domR
ordtval.2 A=ranxXyX|¬yRx
Assertion ordtbaslem RTosetRelfiA=A

Proof

Step Hyp Ref Expression
1 ordtval.1 X=domR
2 ordtval.2 A=ranxXyX|¬yRx
3 3anrot yXaXbXaXbXyX
4 1 tsrlemax RTosetRelyXaXbXyRifaRbbayRayRb
5 3 4 sylan2br RTosetRelaXbXyXyRifaRbbayRayRb
6 5 3exp2 RTosetRelaXbXyXyRifaRbbayRayRb
7 6 imp42 RTosetRelaXbXyXyRifaRbbayRayRb
8 7 notbid RTosetRelaXbXyX¬yRifaRbba¬yRayRb
9 ioran ¬yRayRb¬yRa¬yRb
10 8 9 bitrdi RTosetRelaXbXyX¬yRifaRbba¬yRa¬yRb
11 10 rabbidva RTosetRelaXbXyX|¬yRifaRbba=yX|¬yRa¬yRb
12 ifcl bXaXifaRbbaX
13 12 ancoms aXbXifaRbbaX
14 dmexg RTosetReldomRV
15 1 14 eqeltrid RTosetRelXV
16 15 adantr RTosetRelaXbXXV
17 rabexg XVyX|¬yRa¬yRbV
18 16 17 syl RTosetRelaXbXyX|¬yRa¬yRbV
19 11 18 eqeltrd RTosetRelaXbXyX|¬yRifaRbbaV
20 eqid xXyX|¬yRx=xXyX|¬yRx
21 breq2 x=ifaRbbayRxyRifaRbba
22 21 notbid x=ifaRbba¬yRx¬yRifaRbba
23 22 rabbidv x=ifaRbbayX|¬yRx=yX|¬yRifaRbba
24 20 23 elrnmpt1s ifaRbbaXyX|¬yRifaRbbaVyX|¬yRifaRbbaranxXyX|¬yRx
25 24 2 eleqtrrdi ifaRbbaXyX|¬yRifaRbbaVyX|¬yRifaRbbaA
26 13 19 25 syl2an2 RTosetRelaXbXyX|¬yRifaRbbaA
27 11 26 eqeltrrd RTosetRelaXbXyX|¬yRa¬yRbA
28 27 ralrimivva RTosetRelaXbXyX|¬yRa¬yRbA
29 rabexg XVyX|¬yRaV
30 15 29 syl RTosetRelyX|¬yRaV
31 30 ralrimivw RTosetRelaXyX|¬yRaV
32 breq2 x=ayRxyRa
33 32 notbid x=a¬yRx¬yRa
34 33 rabbidv x=ayX|¬yRx=yX|¬yRa
35 34 cbvmptv xXyX|¬yRx=aXyX|¬yRa
36 ineq1 z=yX|¬yRazyX|¬yRb=yX|¬yRayX|¬yRb
37 inrab yX|¬yRayX|¬yRb=yX|¬yRa¬yRb
38 36 37 eqtrdi z=yX|¬yRazyX|¬yRb=yX|¬yRa¬yRb
39 38 eleq1d z=yX|¬yRazyX|¬yRbAyX|¬yRa¬yRbA
40 39 ralbidv z=yX|¬yRabXzyX|¬yRbAbXyX|¬yRa¬yRbA
41 35 40 ralrnmptw aXyX|¬yRaVzranxXyX|¬yRxbXzyX|¬yRbAaXbXyX|¬yRa¬yRbA
42 31 41 syl RTosetRelzranxXyX|¬yRxbXzyX|¬yRbAaXbXyX|¬yRa¬yRbA
43 28 42 mpbird RTosetRelzranxXyX|¬yRxbXzyX|¬yRbA
44 rabexg XVyX|¬yRbV
45 15 44 syl RTosetRelyX|¬yRbV
46 45 ralrimivw RTosetRelbXyX|¬yRbV
47 breq2 x=byRxyRb
48 47 notbid x=b¬yRx¬yRb
49 48 rabbidv x=byX|¬yRx=yX|¬yRb
50 49 cbvmptv xXyX|¬yRx=bXyX|¬yRb
51 ineq2 w=yX|¬yRbzw=zyX|¬yRb
52 51 eleq1d w=yX|¬yRbzwAzyX|¬yRbA
53 50 52 ralrnmptw bXyX|¬yRbVwranxXyX|¬yRxzwAbXzyX|¬yRbA
54 46 53 syl RTosetRelwranxXyX|¬yRxzwAbXzyX|¬yRbA
55 54 ralbidv RTosetRelzranxXyX|¬yRxwranxXyX|¬yRxzwAzranxXyX|¬yRxbXzyX|¬yRbA
56 43 55 mpbird RTosetRelzranxXyX|¬yRxwranxXyX|¬yRxzwA
57 2 raleqi wAzwAwranxXyX|¬yRxzwA
58 2 57 raleqbii zAwAzwAzranxXyX|¬yRxwranxXyX|¬yRxzwA
59 56 58 sylibr RTosetRelzAwAzwA
60 15 pwexd RTosetRel𝒫XV
61 ssrab2 yX|¬yRxX
62 15 adantr RTosetRelxXXV
63 elpw2g XVyX|¬yRx𝒫XyX|¬yRxX
64 62 63 syl RTosetRelxXyX|¬yRx𝒫XyX|¬yRxX
65 61 64 mpbiri RTosetRelxXyX|¬yRx𝒫X
66 65 fmpttd RTosetRelxXyX|¬yRx:X𝒫X
67 66 frnd RTosetRelranxXyX|¬yRx𝒫X
68 2 67 eqsstrid RTosetRelA𝒫X
69 60 68 ssexd RTosetRelAV
70 inficl AVzAwAzwAfiA=A
71 69 70 syl RTosetRelzAwAzwAfiA=A
72 59 71 mpbid RTosetRelfiA=A