Description: Lemma for ordtbas . In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ordtval.1 | |
|
ordtval.2 | |
||
Assertion | ordtbaslem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtval.1 | |
|
2 | ordtval.2 | |
|
3 | 3anrot | |
|
4 | 1 | tsrlemax | |
5 | 3 4 | sylan2br | |
6 | 5 | 3exp2 | |
7 | 6 | imp42 | |
8 | 7 | notbid | |
9 | ioran | |
|
10 | 8 9 | bitrdi | |
11 | 10 | rabbidva | |
12 | ifcl | |
|
13 | 12 | ancoms | |
14 | dmexg | |
|
15 | 1 14 | eqeltrid | |
16 | 15 | adantr | |
17 | rabexg | |
|
18 | 16 17 | syl | |
19 | 11 18 | eqeltrd | |
20 | eqid | |
|
21 | breq2 | |
|
22 | 21 | notbid | |
23 | 22 | rabbidv | |
24 | 20 23 | elrnmpt1s | |
25 | 24 2 | eleqtrrdi | |
26 | 13 19 25 | syl2an2 | |
27 | 11 26 | eqeltrrd | |
28 | 27 | ralrimivva | |
29 | rabexg | |
|
30 | 15 29 | syl | |
31 | 30 | ralrimivw | |
32 | breq2 | |
|
33 | 32 | notbid | |
34 | 33 | rabbidv | |
35 | 34 | cbvmptv | |
36 | ineq1 | |
|
37 | inrab | |
|
38 | 36 37 | eqtrdi | |
39 | 38 | eleq1d | |
40 | 39 | ralbidv | |
41 | 35 40 | ralrnmptw | |
42 | 31 41 | syl | |
43 | 28 42 | mpbird | |
44 | rabexg | |
|
45 | 15 44 | syl | |
46 | 45 | ralrimivw | |
47 | breq2 | |
|
48 | 47 | notbid | |
49 | 48 | rabbidv | |
50 | 49 | cbvmptv | |
51 | ineq2 | |
|
52 | 51 | eleq1d | |
53 | 50 52 | ralrnmptw | |
54 | 46 53 | syl | |
55 | 54 | ralbidv | |
56 | 43 55 | mpbird | |
57 | 2 | raleqi | |
58 | 2 57 | raleqbii | |
59 | 56 58 | sylibr | |
60 | 15 | pwexd | |
61 | ssrab2 | |
|
62 | 15 | adantr | |
63 | elpw2g | |
|
64 | 62 63 | syl | |
65 | 61 64 | mpbiri | |
66 | 65 | fmpttd | |
67 | 66 | frnd | |
68 | 2 67 | eqsstrid | |
69 | 60 68 | ssexd | |
70 | inficl | |
|
71 | 69 70 | syl | |
72 | 59 71 | mpbid | |