Metamath Proof Explorer


Theorem ostthlem1

Description: Lemma for ostth . If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
ostthlem1.1 φFA
ostthlem1.2 φGA
ostthlem1.3 φn2Fn=Gn
Assertion ostthlem1 φF=G

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 ostthlem1.1 φFA
4 ostthlem1.2 φGA
5 ostthlem1.3 φn2Fn=Gn
6 1 qrngbas =BaseQ
7 2 6 abvf FAF:
8 ffn F:FFn
9 3 7 8 3syl φFFn
10 2 6 abvf GAG:
11 ffn G:GFn
12 4 10 11 3syl φGFn
13 elq ykny=kn
14 1 qdrng QDivRing
15 14 a1i φknQDivRing
16 3 adantr φknFA
17 zq kk
18 17 ad2antrl φknk
19 nnq nn
20 19 ad2antll φknn
21 nnne0 nn0
22 21 ad2antll φknn0
23 1 qrng0 0=0Q
24 eqid /rQ=/rQ
25 2 6 23 24 abvdiv QDivRingFAknn0Fk/rQn=FkFn
26 15 16 18 20 22 25 syl23anc φknFk/rQn=FkFn
27 4 adantr φknGA
28 2 6 23 24 abvdiv QDivRingGAknn0Gk/rQn=GkGn
29 15 27 18 20 22 28 syl23anc φknGk/rQn=GkGn
30 2 23 abv0 FAF0=0
31 3 30 syl φF0=0
32 2 23 abv0 GAG0=0
33 4 32 syl φG0=0
34 31 33 eqtr4d φF0=G0
35 fveq2 k=0Fk=F0
36 fveq2 k=0Gk=G0
37 35 36 eqeq12d k=0Fk=GkF0=G0
38 34 37 syl5ibrcom φk=0Fk=Gk
39 38 adantr φkk=0Fk=Gk
40 39 imp φkk=0Fk=Gk
41 elnn1uz2 nn=1n2
42 1 qrng1 1=1Q
43 2 42 abv1 QDivRingFAF1=1
44 14 3 43 sylancr φF1=1
45 2 42 abv1 QDivRingGAG1=1
46 14 4 45 sylancr φG1=1
47 44 46 eqtr4d φF1=G1
48 fveq2 n=1Fn=F1
49 fveq2 n=1Gn=G1
50 48 49 eqeq12d n=1Fn=GnF1=G1
51 47 50 syl5ibrcom φn=1Fn=Gn
52 51 imp φn=1Fn=Gn
53 52 5 jaodan φn=1n2Fn=Gn
54 41 53 sylan2b φnFn=Gn
55 54 ralrimiva φnFn=Gn
56 55 adantr φknFn=Gn
57 fveq2 n=kFn=Fk
58 fveq2 n=kGn=Gk
59 57 58 eqeq12d n=kFn=GnFk=Gk
60 59 rspccva nFn=GnkFk=Gk
61 56 60 sylan φkkFk=Gk
62 fveq2 n=invgQkFn=FinvgQk
63 fveq2 n=invgQkGn=GinvgQk
64 62 63 eqeq12d n=invgQkFn=GnFinvgQk=GinvgQk
65 55 ad2antrr φkknFn=Gn
66 17 adantl φkk
67 1 qrngneg kinvgQk=k
68 66 67 syl φkinvgQk=k
69 68 eleq1d φkinvgQkk
70 69 biimpar φkkinvgQk
71 64 65 70 rspcdva φkkFinvgQk=GinvgQk
72 3 ad2antrr φkkFA
73 17 ad2antlr φkkk
74 eqid invgQ=invgQ
75 2 6 74 abvneg FAkFinvgQk=Fk
76 72 73 75 syl2anc φkkFinvgQk=Fk
77 4 ad2antrr φkkGA
78 2 6 74 abvneg GAkGinvgQk=Gk
79 77 73 78 syl2anc φkkGinvgQk=Gk
80 71 76 79 3eqtr3d φkkFk=Gk
81 elz kkk=0kk
82 81 simprbi kk=0kk
83 82 adantl φkk=0kk
84 40 61 80 83 mpjao3dan φkFk=Gk
85 84 adantrr φknFk=Gk
86 54 adantrl φknFn=Gn
87 85 86 oveq12d φknFkFn=GkGn
88 29 87 eqtr4d φknGk/rQn=FkFn
89 26 88 eqtr4d φknFk/rQn=Gk/rQn
90 1 qrngdiv knn0k/rQn=kn
91 18 20 22 90 syl3anc φknk/rQn=kn
92 91 fveq2d φknFk/rQn=Fkn
93 91 fveq2d φknGk/rQn=Gkn
94 89 92 93 3eqtr3d φknFkn=Gkn
95 fveq2 y=knFy=Fkn
96 fveq2 y=knGy=Gkn
97 95 96 eqeq12d y=knFy=GyFkn=Gkn
98 94 97 syl5ibrcom φkny=knFy=Gy
99 98 rexlimdvva φkny=knFy=Gy
100 13 99 biimtrid φyFy=Gy
101 100 imp φyFy=Gy
102 9 12 101 eqfnfvd φF=G