| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  | 
						
							| 2 |  | qabsabv.a |  | 
						
							| 3 |  | ostthlem1.1 |  | 
						
							| 4 |  | ostthlem1.2 |  | 
						
							| 5 |  | ostthlem1.3 |  | 
						
							| 6 | 1 | qrngbas |  | 
						
							| 7 | 2 6 | abvf |  | 
						
							| 8 |  | ffn |  | 
						
							| 9 | 3 7 8 | 3syl |  | 
						
							| 10 | 2 6 | abvf |  | 
						
							| 11 |  | ffn |  | 
						
							| 12 | 4 10 11 | 3syl |  | 
						
							| 13 |  | elq |  | 
						
							| 14 | 1 | qdrng |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 3 | adantr |  | 
						
							| 17 |  | zq |  | 
						
							| 18 | 17 | ad2antrl |  | 
						
							| 19 |  | nnq |  | 
						
							| 20 | 19 | ad2antll |  | 
						
							| 21 |  | nnne0 |  | 
						
							| 22 | 21 | ad2antll |  | 
						
							| 23 | 1 | qrng0 |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 2 6 23 24 | abvdiv |  | 
						
							| 26 | 15 16 18 20 22 25 | syl23anc |  | 
						
							| 27 | 4 | adantr |  | 
						
							| 28 | 2 6 23 24 | abvdiv |  | 
						
							| 29 | 15 27 18 20 22 28 | syl23anc |  | 
						
							| 30 | 2 23 | abv0 |  | 
						
							| 31 | 3 30 | syl |  | 
						
							| 32 | 2 23 | abv0 |  | 
						
							| 33 | 4 32 | syl |  | 
						
							| 34 | 31 33 | eqtr4d |  | 
						
							| 35 |  | fveq2 |  | 
						
							| 36 |  | fveq2 |  | 
						
							| 37 | 35 36 | eqeq12d |  | 
						
							| 38 | 34 37 | syl5ibrcom |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 | 39 | imp |  | 
						
							| 41 |  | elnn1uz2 |  | 
						
							| 42 | 1 | qrng1 |  | 
						
							| 43 | 2 42 | abv1 |  | 
						
							| 44 | 14 3 43 | sylancr |  | 
						
							| 45 | 2 42 | abv1 |  | 
						
							| 46 | 14 4 45 | sylancr |  | 
						
							| 47 | 44 46 | eqtr4d |  | 
						
							| 48 |  | fveq2 |  | 
						
							| 49 |  | fveq2 |  | 
						
							| 50 | 48 49 | eqeq12d |  | 
						
							| 51 | 47 50 | syl5ibrcom |  | 
						
							| 52 | 51 | imp |  | 
						
							| 53 | 52 5 | jaodan |  | 
						
							| 54 | 41 53 | sylan2b |  | 
						
							| 55 | 54 | ralrimiva |  | 
						
							| 56 | 55 | adantr |  | 
						
							| 57 |  | fveq2 |  | 
						
							| 58 |  | fveq2 |  | 
						
							| 59 | 57 58 | eqeq12d |  | 
						
							| 60 | 59 | rspccva |  | 
						
							| 61 | 56 60 | sylan |  | 
						
							| 62 |  | fveq2 |  | 
						
							| 63 |  | fveq2 |  | 
						
							| 64 | 62 63 | eqeq12d |  | 
						
							| 65 | 55 | ad2antrr |  | 
						
							| 66 | 17 | adantl |  | 
						
							| 67 | 1 | qrngneg |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 | 68 | eleq1d |  | 
						
							| 70 | 69 | biimpar |  | 
						
							| 71 | 64 65 70 | rspcdva |  | 
						
							| 72 | 3 | ad2antrr |  | 
						
							| 73 | 17 | ad2antlr |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 | 2 6 74 | abvneg |  | 
						
							| 76 | 72 73 75 | syl2anc |  | 
						
							| 77 | 4 | ad2antrr |  | 
						
							| 78 | 2 6 74 | abvneg |  | 
						
							| 79 | 77 73 78 | syl2anc |  | 
						
							| 80 | 71 76 79 | 3eqtr3d |  | 
						
							| 81 |  | elz |  | 
						
							| 82 | 81 | simprbi |  | 
						
							| 83 | 82 | adantl |  | 
						
							| 84 | 40 61 80 83 | mpjao3dan |  | 
						
							| 85 | 84 | adantrr |  | 
						
							| 86 | 54 | adantrl |  | 
						
							| 87 | 85 86 | oveq12d |  | 
						
							| 88 | 29 87 | eqtr4d |  | 
						
							| 89 | 26 88 | eqtr4d |  | 
						
							| 90 | 1 | qrngdiv |  | 
						
							| 91 | 18 20 22 90 | syl3anc |  | 
						
							| 92 | 91 | fveq2d |  | 
						
							| 93 | 91 | fveq2d |  | 
						
							| 94 | 89 92 93 | 3eqtr3d |  | 
						
							| 95 |  | fveq2 |  | 
						
							| 96 |  | fveq2 |  | 
						
							| 97 | 95 96 | eqeq12d |  | 
						
							| 98 | 94 97 | syl5ibrcom |  | 
						
							| 99 | 98 | rexlimdvva |  | 
						
							| 100 | 13 99 | biimtrid |  | 
						
							| 101 | 100 | imp |  | 
						
							| 102 | 9 12 101 | eqfnfvd |  |