Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
|
2 |
|
bren |
|
3 |
|
pssss |
|
4 |
|
imass2 |
|
5 |
3 4
|
syl |
|
6 |
5
|
adantl |
|
7 |
|
pssnel |
|
8 |
|
eldif |
|
9 |
|
f1ofn |
|
10 |
|
difss |
|
11 |
|
fnfvima |
|
12 |
11
|
3expia |
|
13 |
9 10 12
|
sylancl |
|
14 |
|
dff1o3 |
|
15 |
|
imadif |
|
16 |
14 15
|
simplbiim |
|
17 |
16
|
eleq2d |
|
18 |
13 17
|
sylibd |
|
19 |
|
n0i |
|
20 |
18 19
|
syl6 |
|
21 |
8 20
|
syl5bir |
|
22 |
21
|
exlimdv |
|
23 |
22
|
imp |
|
24 |
7 23
|
sylan2 |
|
25 |
|
ssdif0 |
|
26 |
24 25
|
sylnibr |
|
27 |
|
dfpss3 |
|
28 |
6 26 27
|
sylanbrc |
|
29 |
|
imadmrn |
|
30 |
|
f1odm |
|
31 |
30
|
imaeq2d |
|
32 |
|
f1ofo |
|
33 |
|
forn |
|
34 |
32 33
|
syl |
|
35 |
29 31 34
|
3eqtr3a |
|
36 |
35
|
psseq2d |
|
37 |
36
|
adantr |
|
38 |
28 37
|
mpbid |
|
39 |
|
php2 |
|
40 |
38 39
|
sylan2 |
|
41 |
|
nnfi |
|
42 |
|
f1of1 |
|
43 |
|
f1ores |
|
44 |
42 3 43
|
syl2an |
|
45 |
|
vex |
|
46 |
45
|
resex |
|
47 |
|
f1oeq1 |
|
48 |
46 47
|
spcev |
|
49 |
|
bren |
|
50 |
48 49
|
sylibr |
|
51 |
44 50
|
syl |
|
52 |
|
endom |
|
53 |
|
sdomdom |
|
54 |
|
domfi |
|
55 |
53 54
|
sylan2 |
|
56 |
55
|
3adant2 |
|
57 |
|
domfi |
|
58 |
57
|
3adant3 |
|
59 |
|
domsdomtrfi |
|
60 |
58 59
|
syld3an1 |
|
61 |
56 60
|
syld3an1 |
|
62 |
52 61
|
syl3an2 |
|
63 |
62
|
3expia |
|
64 |
41 51 63
|
syl2an |
|
65 |
40 64
|
mpd |
|
66 |
65
|
exp32 |
|
67 |
66
|
exlimdv |
|
68 |
2 67
|
syl5bi |
|
69 |
|
ensymfib |
|
70 |
69
|
adantr |
|
71 |
70
|
biimp3ar |
|
72 |
|
endom |
|
73 |
|
sdomdom |
|
74 |
|
domfi |
|
75 |
73 74
|
sylan2 |
|
76 |
75
|
3adant3 |
|
77 |
|
sdomdomtrfi |
|
78 |
76 77
|
syld3an1 |
|
79 |
72 78
|
syl3an3 |
|
80 |
71 79
|
syld3an3 |
|
81 |
41 80
|
syl3an1 |
|
82 |
81
|
3com23 |
|
83 |
82
|
3exp |
|
84 |
68 83
|
syldd |
|
85 |
84
|
rexlimiv |
|
86 |
1 85
|
sylbi |
|
87 |
86
|
imp |
|