Metamath Proof Explorer


Theorem pi1xfrcnvlem

Description: Given a path F between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1xfr.p P=Jπ1F0
pi1xfr.q Q=Jπ1F1
pi1xfr.b B=BaseP
pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
pi1xfr.j φJTopOnX
pi1xfr.f φFIICnJ
pi1xfr.i I=x01F1x
pi1xfrcnv.h H=ranhBaseQhphJF*𝑝Jh*𝑝JIphJ
Assertion pi1xfrcnvlem φG-1H

Proof

Step Hyp Ref Expression
1 pi1xfr.p P=Jπ1F0
2 pi1xfr.q Q=Jπ1F1
3 pi1xfr.b B=BaseP
4 pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
5 pi1xfr.j φJTopOnX
6 pi1xfr.f φFIICnJ
7 pi1xfr.i I=x01F1x
8 pi1xfrcnv.h H=ranhBaseQhphJF*𝑝Jh*𝑝JIphJ
9 fvex phJV
10 ecexg phJVgphJV
11 9 10 mp1i φgBgphJV
12 ecexg phJVI*𝑝Jg*𝑝JFphJV
13 9 12 mp1i φgBI*𝑝Jg*𝑝JFphJV
14 4 11 13 fliftcnv φG-1=rangBI*𝑝Jg*𝑝JFphJgphJ
15 7 pcorevcl FIICnJIIICnJI0=F1I1=F0
16 6 15 syl φIIICnJI0=F1I1=F0
17 16 simp1d φIIICnJ
18 17 adantr φgBIIICnJ
19 iitopon IITopOn01
20 cnf2 IITopOn01JTopOnXFIICnJF:01X
21 19 5 6 20 mp3an2i φF:01X
22 0elunit 001
23 ffvelcdm F:01X001F0X
24 21 22 23 sylancl φF0X
25 3 a1i φB=BaseP
26 1 5 24 25 pi1eluni φgBgIICnJg0=F0g1=F0
27 26 biimpa φgBgIICnJg0=F0g1=F0
28 27 simp1d φgBgIICnJ
29 6 adantr φgBFIICnJ
30 27 simp3d φgBg1=F0
31 28 29 30 pcocn φgBg*𝑝JFIICnJ
32 16 simp3d φI1=F0
33 32 adantr φgBI1=F0
34 27 simp2d φgBg0=F0
35 33 34 eqtr4d φgBI1=g0
36 28 29 pco0 φgBg*𝑝JF0=g0
37 35 36 eqtr4d φgBI1=g*𝑝JF0
38 18 31 37 pcocn φgBI*𝑝Jg*𝑝JFIICnJ
39 18 31 pco0 φgBI*𝑝Jg*𝑝JF0=I0
40 16 simp2d φI0=F1
41 40 adantr φgBI0=F1
42 39 41 eqtrd φgBI*𝑝Jg*𝑝JF0=F1
43 18 31 pco1 φgBI*𝑝Jg*𝑝JF1=g*𝑝JF1
44 28 29 pco1 φgBg*𝑝JF1=F1
45 43 44 eqtrd φgBI*𝑝Jg*𝑝JF1=F1
46 1elunit 101
47 ffvelcdm F:01X101F1X
48 21 46 47 sylancl φF1X
49 eqidd φBaseQ=BaseQ
50 2 5 48 49 pi1eluni φI*𝑝Jg*𝑝JFBaseQI*𝑝Jg*𝑝JFIICnJI*𝑝Jg*𝑝JF0=F1I*𝑝Jg*𝑝JF1=F1
51 50 adantr φgBI*𝑝Jg*𝑝JFBaseQI*𝑝Jg*𝑝JFIICnJI*𝑝Jg*𝑝JF0=F1I*𝑝Jg*𝑝JF1=F1
52 38 42 45 51 mpbir3and φgBI*𝑝Jg*𝑝JFBaseQ
53 eqidd φgBI*𝑝Jg*𝑝JF=gBI*𝑝Jg*𝑝JF
54 eqidd φhBaseQhphJF*𝑝Jh*𝑝JIphJ=hBaseQhphJF*𝑝Jh*𝑝JIphJ
55 eceq1 h=I*𝑝Jg*𝑝JFhphJ=I*𝑝Jg*𝑝JFphJ
56 oveq1 h=I*𝑝Jg*𝑝JFh*𝑝JI=I*𝑝Jg*𝑝JF*𝑝JI
57 56 oveq2d h=I*𝑝Jg*𝑝JFF*𝑝Jh*𝑝JI=F*𝑝JI*𝑝Jg*𝑝JF*𝑝JI
58 57 eceq1d h=I*𝑝Jg*𝑝JFF*𝑝Jh*𝑝JIphJ=F*𝑝JI*𝑝Jg*𝑝JF*𝑝JIphJ
59 55 58 opeq12d h=I*𝑝Jg*𝑝JFhphJF*𝑝Jh*𝑝JIphJ=I*𝑝Jg*𝑝JFphJF*𝑝JI*𝑝Jg*𝑝JF*𝑝JIphJ
60 52 53 54 59 fmptco φhBaseQhphJF*𝑝Jh*𝑝JIphJgBI*𝑝Jg*𝑝JF=gBI*𝑝Jg*𝑝JFphJF*𝑝JI*𝑝Jg*𝑝JF*𝑝JIphJ
61 phtpcer phJErIICnJ
62 61 a1i φgBphJErIICnJ
63 18 28 pco0 φgBI*𝑝Jg0=I0
64 63 41 eqtr2d φgBF1=I*𝑝Jg0
65 62 29 erref φgBFphJF
66 62 18 erref φgBIphJI
67 eqid 01×F0=01×F0
68 67 pcopt2 gIICnJg1=F0g*𝑝J01×F0phJg
69 28 30 68 syl2anc φgBg*𝑝J01×F0phJg
70 41 eqcomd φgBF1=I0
71 eqid x01ifx12ifx142xx+14x2+12=x01ifx12ifx142xx+14x2+12
72 28 29 18 30 70 71 pcoass φgBg*𝑝JF*𝑝JIphJg*𝑝JF*𝑝JI
73 29 18 pco0 φgBF*𝑝JI0=F0
74 30 73 eqtr4d φgBg1=F*𝑝JI0
75 62 28 erref φgBgphJg
76 7 67 pcorev2 FIICnJF*𝑝JIphJ01×F0
77 29 76 syl φgBF*𝑝JIphJ01×F0
78 74 75 77 pcohtpy φgBg*𝑝JF*𝑝JIphJg*𝑝J01×F0
79 62 72 78 ertr2d φgBg*𝑝J01×F0phJg*𝑝JF*𝑝JI
80 62 69 79 ertr3d φgBgphJg*𝑝JF*𝑝JI
81 35 66 80 pcohtpy φgBI*𝑝JgphJI*𝑝Jg*𝑝JF*𝑝JI
82 44 41 eqtr4d φgBg*𝑝JF1=I0
83 18 31 18 37 82 71 pcoass φgBI*𝑝Jg*𝑝JF*𝑝JIphJI*𝑝Jg*𝑝JF*𝑝JI
84 62 81 83 ertr4d φgBI*𝑝JgphJI*𝑝Jg*𝑝JF*𝑝JI
85 64 65 84 pcohtpy φgBF*𝑝JI*𝑝JgphJF*𝑝JI*𝑝Jg*𝑝JF*𝑝JI
86 29 18 28 70 35 71 pcoass φgBF*𝑝JI*𝑝JgphJF*𝑝JI*𝑝Jg
87 29 18 pco1 φgBF*𝑝JI1=I1
88 87 35 eqtrd φgBF*𝑝JI1=g0
89 88 77 75 pcohtpy φgBF*𝑝JI*𝑝JgphJ01×F0*𝑝Jg
90 67 pcopt gIICnJg0=F001×F0*𝑝JgphJg
91 28 34 90 syl2anc φgB01×F0*𝑝JgphJg
92 62 89 91 ertrd φgBF*𝑝JI*𝑝JgphJg
93 62 86 92 ertr3d φgBF*𝑝JI*𝑝JgphJg
94 62 85 93 ertr3d φgBF*𝑝JI*𝑝Jg*𝑝JF*𝑝JIphJg
95 62 94 erthi φgBF*𝑝JI*𝑝Jg*𝑝JF*𝑝JIphJ=gphJ
96 95 opeq2d φgBI*𝑝Jg*𝑝JFphJF*𝑝JI*𝑝Jg*𝑝JF*𝑝JIphJ=I*𝑝Jg*𝑝JFphJgphJ
97 96 mpteq2dva φgBI*𝑝Jg*𝑝JFphJF*𝑝JI*𝑝Jg*𝑝JF*𝑝JIphJ=gBI*𝑝Jg*𝑝JFphJgphJ
98 60 97 eqtrd φhBaseQhphJF*𝑝Jh*𝑝JIphJgBI*𝑝Jg*𝑝JF=gBI*𝑝Jg*𝑝JFphJgphJ
99 98 rneqd φranhBaseQhphJF*𝑝Jh*𝑝JIphJgBI*𝑝Jg*𝑝JF=rangBI*𝑝Jg*𝑝JFphJgphJ
100 14 99 eqtr4d φG-1=ranhBaseQhphJF*𝑝Jh*𝑝JIphJgBI*𝑝Jg*𝑝JF
101 rncoss ranhBaseQhphJF*𝑝Jh*𝑝JIphJgBI*𝑝Jg*𝑝JFranhBaseQhphJF*𝑝Jh*𝑝JIphJ
102 101 8 sseqtrri ranhBaseQhphJF*𝑝Jh*𝑝JIphJgBI*𝑝Jg*𝑝JFH
103 100 102 eqsstrdi φG-1H