Metamath Proof Explorer


Theorem pi1xfrcnvlem

Description: Given a path F between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1xfr.p P = J π 1 F 0
pi1xfr.q Q = J π 1 F 1
pi1xfr.b B = Base P
pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
pi1xfr.j φ J TopOn X
pi1xfr.f φ F II Cn J
pi1xfr.i I = x 0 1 F 1 x
pi1xfrcnv.h H = ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J
Assertion pi1xfrcnvlem φ G -1 H

Proof

Step Hyp Ref Expression
1 pi1xfr.p P = J π 1 F 0
2 pi1xfr.q Q = J π 1 F 1
3 pi1xfr.b B = Base P
4 pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
5 pi1xfr.j φ J TopOn X
6 pi1xfr.f φ F II Cn J
7 pi1xfr.i I = x 0 1 F 1 x
8 pi1xfrcnv.h H = ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J
9 fvex ph J V
10 ecexg ph J V g ph J V
11 9 10 mp1i φ g B g ph J V
12 ecexg ph J V I * 𝑝 J g * 𝑝 J F ph J V
13 9 12 mp1i φ g B I * 𝑝 J g * 𝑝 J F ph J V
14 4 11 13 fliftcnv φ G -1 = ran g B I * 𝑝 J g * 𝑝 J F ph J g ph J
15 7 pcorevcl F II Cn J I II Cn J I 0 = F 1 I 1 = F 0
16 6 15 syl φ I II Cn J I 0 = F 1 I 1 = F 0
17 16 simp1d φ I II Cn J
18 17 adantr φ g B I II Cn J
19 iitopon II TopOn 0 1
20 cnf2 II TopOn 0 1 J TopOn X F II Cn J F : 0 1 X
21 19 5 6 20 mp3an2i φ F : 0 1 X
22 0elunit 0 0 1
23 ffvelrn F : 0 1 X 0 0 1 F 0 X
24 21 22 23 sylancl φ F 0 X
25 3 a1i φ B = Base P
26 1 5 24 25 pi1eluni φ g B g II Cn J g 0 = F 0 g 1 = F 0
27 26 biimpa φ g B g II Cn J g 0 = F 0 g 1 = F 0
28 27 simp1d φ g B g II Cn J
29 6 adantr φ g B F II Cn J
30 27 simp3d φ g B g 1 = F 0
31 28 29 30 pcocn φ g B g * 𝑝 J F II Cn J
32 16 simp3d φ I 1 = F 0
33 32 adantr φ g B I 1 = F 0
34 27 simp2d φ g B g 0 = F 0
35 33 34 eqtr4d φ g B I 1 = g 0
36 28 29 pco0 φ g B g * 𝑝 J F 0 = g 0
37 35 36 eqtr4d φ g B I 1 = g * 𝑝 J F 0
38 18 31 37 pcocn φ g B I * 𝑝 J g * 𝑝 J F II Cn J
39 18 31 pco0 φ g B I * 𝑝 J g * 𝑝 J F 0 = I 0
40 16 simp2d φ I 0 = F 1
41 40 adantr φ g B I 0 = F 1
42 39 41 eqtrd φ g B I * 𝑝 J g * 𝑝 J F 0 = F 1
43 18 31 pco1 φ g B I * 𝑝 J g * 𝑝 J F 1 = g * 𝑝 J F 1
44 28 29 pco1 φ g B g * 𝑝 J F 1 = F 1
45 43 44 eqtrd φ g B I * 𝑝 J g * 𝑝 J F 1 = F 1
46 1elunit 1 0 1
47 ffvelrn F : 0 1 X 1 0 1 F 1 X
48 21 46 47 sylancl φ F 1 X
49 eqidd φ Base Q = Base Q
50 2 5 48 49 pi1eluni φ I * 𝑝 J g * 𝑝 J F Base Q I * 𝑝 J g * 𝑝 J F II Cn J I * 𝑝 J g * 𝑝 J F 0 = F 1 I * 𝑝 J g * 𝑝 J F 1 = F 1
51 50 adantr φ g B I * 𝑝 J g * 𝑝 J F Base Q I * 𝑝 J g * 𝑝 J F II Cn J I * 𝑝 J g * 𝑝 J F 0 = F 1 I * 𝑝 J g * 𝑝 J F 1 = F 1
52 38 42 45 51 mpbir3and φ g B I * 𝑝 J g * 𝑝 J F Base Q
53 eqidd φ g B I * 𝑝 J g * 𝑝 J F = g B I * 𝑝 J g * 𝑝 J F
54 eqidd φ h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J = h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J
55 eceq1 h = I * 𝑝 J g * 𝑝 J F h ph J = I * 𝑝 J g * 𝑝 J F ph J
56 oveq1 h = I * 𝑝 J g * 𝑝 J F h * 𝑝 J I = I * 𝑝 J g * 𝑝 J F * 𝑝 J I
57 56 oveq2d h = I * 𝑝 J g * 𝑝 J F F * 𝑝 J h * 𝑝 J I = F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I
58 57 eceq1d h = I * 𝑝 J g * 𝑝 J F F * 𝑝 J h * 𝑝 J I ph J = F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I ph J
59 55 58 opeq12d h = I * 𝑝 J g * 𝑝 J F h ph J F * 𝑝 J h * 𝑝 J I ph J = I * 𝑝 J g * 𝑝 J F ph J F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I ph J
60 52 53 54 59 fmptco φ h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J g B I * 𝑝 J g * 𝑝 J F = g B I * 𝑝 J g * 𝑝 J F ph J F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I ph J
61 phtpcer ph J Er II Cn J
62 61 a1i φ g B ph J Er II Cn J
63 18 28 pco0 φ g B I * 𝑝 J g 0 = I 0
64 63 41 eqtr2d φ g B F 1 = I * 𝑝 J g 0
65 62 29 erref φ g B F ph J F
66 62 18 erref φ g B I ph J I
67 eqid 0 1 × F 0 = 0 1 × F 0
68 67 pcopt2 g II Cn J g 1 = F 0 g * 𝑝 J 0 1 × F 0 ph J g
69 28 30 68 syl2anc φ g B g * 𝑝 J 0 1 × F 0 ph J g
70 41 eqcomd φ g B F 1 = I 0
71 eqid x 0 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = x 0 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2
72 28 29 18 30 70 71 pcoass φ g B g * 𝑝 J F * 𝑝 J I ph J g * 𝑝 J F * 𝑝 J I
73 29 18 pco0 φ g B F * 𝑝 J I 0 = F 0
74 30 73 eqtr4d φ g B g 1 = F * 𝑝 J I 0
75 62 28 erref φ g B g ph J g
76 7 67 pcorev2 F II Cn J F * 𝑝 J I ph J 0 1 × F 0
77 29 76 syl φ g B F * 𝑝 J I ph J 0 1 × F 0
78 74 75 77 pcohtpy φ g B g * 𝑝 J F * 𝑝 J I ph J g * 𝑝 J 0 1 × F 0
79 62 72 78 ertr2d φ g B g * 𝑝 J 0 1 × F 0 ph J g * 𝑝 J F * 𝑝 J I
80 62 69 79 ertr3d φ g B g ph J g * 𝑝 J F * 𝑝 J I
81 35 66 80 pcohtpy φ g B I * 𝑝 J g ph J I * 𝑝 J g * 𝑝 J F * 𝑝 J I
82 44 41 eqtr4d φ g B g * 𝑝 J F 1 = I 0
83 18 31 18 37 82 71 pcoass φ g B I * 𝑝 J g * 𝑝 J F * 𝑝 J I ph J I * 𝑝 J g * 𝑝 J F * 𝑝 J I
84 62 81 83 ertr4d φ g B I * 𝑝 J g ph J I * 𝑝 J g * 𝑝 J F * 𝑝 J I
85 64 65 84 pcohtpy φ g B F * 𝑝 J I * 𝑝 J g ph J F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I
86 29 18 28 70 35 71 pcoass φ g B F * 𝑝 J I * 𝑝 J g ph J F * 𝑝 J I * 𝑝 J g
87 29 18 pco1 φ g B F * 𝑝 J I 1 = I 1
88 87 35 eqtrd φ g B F * 𝑝 J I 1 = g 0
89 88 77 75 pcohtpy φ g B F * 𝑝 J I * 𝑝 J g ph J 0 1 × F 0 * 𝑝 J g
90 67 pcopt g II Cn J g 0 = F 0 0 1 × F 0 * 𝑝 J g ph J g
91 28 34 90 syl2anc φ g B 0 1 × F 0 * 𝑝 J g ph J g
92 62 89 91 ertrd φ g B F * 𝑝 J I * 𝑝 J g ph J g
93 62 86 92 ertr3d φ g B F * 𝑝 J I * 𝑝 J g ph J g
94 62 85 93 ertr3d φ g B F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I ph J g
95 62 94 erthi φ g B F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I ph J = g ph J
96 95 opeq2d φ g B I * 𝑝 J g * 𝑝 J F ph J F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I ph J = I * 𝑝 J g * 𝑝 J F ph J g ph J
97 96 mpteq2dva φ g B I * 𝑝 J g * 𝑝 J F ph J F * 𝑝 J I * 𝑝 J g * 𝑝 J F * 𝑝 J I ph J = g B I * 𝑝 J g * 𝑝 J F ph J g ph J
98 60 97 eqtrd φ h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J g B I * 𝑝 J g * 𝑝 J F = g B I * 𝑝 J g * 𝑝 J F ph J g ph J
99 98 rneqd φ ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J g B I * 𝑝 J g * 𝑝 J F = ran g B I * 𝑝 J g * 𝑝 J F ph J g ph J
100 14 99 eqtr4d φ G -1 = ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J g B I * 𝑝 J g * 𝑝 J F
101 rncoss ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J g B I * 𝑝 J g * 𝑝 J F ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J
102 101 8 sseqtrri ran h Base Q h ph J F * 𝑝 J h * 𝑝 J I ph J g B I * 𝑝 J g * 𝑝 J F H
103 100 102 eqsstrdi φ G -1 H