Metamath Proof Explorer


Theorem pilem3

Description: Lemma for pire , pigt2lt4 and sinpi . Existence part. (Contributed by Paul Chapman, 23-Jan-2008) (Proof shortened by Mario Carneiro, 18-Jun-2014) (Revised by AV, 14-Sep-2020) (Proof shortened by BJ, 30-Jun-2022)

Ref Expression
Assertion pilem3 π24sinπ=0

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i 2
3 4re 4
4 3 a1i 4
5 0red 0
6 2lt4 2<4
7 6 a1i 2<4
8 iccssre 2424
9 1 3 8 mp2an 24
10 ax-resscn
11 9 10 sstri 24
12 11 a1i 24
13 sincn sin:cn
14 13 a1i sin:cn
15 9 sseli y24y
16 15 resincld y24siny
17 16 adantl y24siny
18 sin4lt0 sin4<0
19 sincos2sgn 0<sin2cos2<0
20 19 simpli 0<sin2
21 18 20 pm3.2i sin4<00<sin2
22 21 a1i sin4<00<sin2
23 2 4 5 7 12 14 17 22 ivth2 x24sinx=0
24 23 mptru x24sinx=0
25 df-pi π=sup+sin-10<
26 inss1 +sin-10+
27 rpssre +
28 26 27 sstri +sin-10
29 0re 0
30 26 sseli z+sin-10z+
31 30 rpge0d z+sin-100z
32 31 rgen z+sin-100z
33 breq1 y=0yz0z
34 33 ralbidv y=0z+sin-10yzz+sin-100z
35 34 rspcev 0z+sin-100zyz+sin-10yz
36 29 32 35 mp2an yz+sin-10yz
37 elioore x24x
38 37 adantr x24sinx=0x
39 0red x24sinx=00
40 1 a1i x24sinx=02
41 2pos 0<2
42 41 a1i x24sinx=00<2
43 eliooord x242<xx<4
44 43 simpld x242<x
45 44 adantr x24sinx=02<x
46 39 40 38 42 45 lttrd x24sinx=00<x
47 38 46 elrpd x24sinx=0x+
48 simpr x24sinx=0sinx=0
49 pilem1 x+sin-10x+sinx=0
50 47 48 49 sylanbrc x24sinx=0x+sin-10
51 infrelb +sin-10yz+sin-10yzx+sin-10sup+sin-10<x
52 28 36 50 51 mp3an12i x24sinx=0sup+sin-10<x
53 25 52 eqbrtrid x24sinx=0πx
54 simpll x24sinx=0y+sin-10x24
55 simpr x24sinx=0y+sin-10y+sin-10
56 pilem1 y+sin-10y+siny=0
57 55 56 sylib x24sinx=0y+sin-10y+siny=0
58 57 simpld x24sinx=0y+sin-10y+
59 simplr x24sinx=0y+sin-10sinx=0
60 57 simprd x24sinx=0y+sin-10siny=0
61 54 58 59 60 pilem2 x24sinx=0y+sin-10π+x2y
62 61 ralrimiva x24sinx=0y+sin-10π+x2y
63 28 a1i x24sinx=0+sin-10
64 50 ne0d x24sinx=0+sin-10
65 36 a1i x24sinx=0yz+sin-10yz
66 infrecl +sin-10+sin-10yz+sin-10yzsup+sin-10<
67 28 36 66 mp3an13 +sin-10sup+sin-10<
68 64 67 syl x24sinx=0sup+sin-10<
69 25 68 eqeltrid x24sinx=0π
70 69 38 readdcld x24sinx=0π+x
71 70 rehalfcld x24sinx=0π+x2
72 infregelb +sin-10+sin-10yz+sin-10yzπ+x2π+x2sup+sin-10<y+sin-10π+x2y
73 63 64 65 71 72 syl31anc x24sinx=0π+x2sup+sin-10<y+sin-10π+x2y
74 62 73 mpbird x24sinx=0π+x2sup+sin-10<
75 74 25 breqtrrdi x24sinx=0π+x2π
76 69 recnd x24sinx=0π
77 38 recnd x24sinx=0x
78 76 77 addcomd x24sinx=0π+x=x+π
79 78 oveq1d x24sinx=0π+x2=x+π2
80 79 breq1d x24sinx=0π+x2πx+π2π
81 avgle2 xπxπx+π2π
82 38 69 81 syl2anc x24sinx=0xπx+π2π
83 80 82 bitr4d x24sinx=0π+x2πxπ
84 75 83 mpbid x24sinx=0xπ
85 69 38 letri3d x24sinx=0π=xπxxπ
86 53 84 85 mpbir2and x24sinx=0π=x
87 simpl x24sinx=0x24
88 86 87 eqeltrd x24sinx=0π24
89 86 fveq2d x24sinx=0sinπ=sinx
90 89 48 eqtrd x24sinx=0sinπ=0
91 88 90 jca x24sinx=0π24sinπ=0
92 91 rexlimiva x24sinx=0π24sinπ=0
93 24 92 ax-mp π24sinπ=0