Metamath Proof Explorer


Theorem pmtrcnel

Description: Composing a permutation F with a transposition which results in moving at least one less point. Here the set of points moved by a permutation F is expressed as dom ( F \ _I ) . (Contributed by Thierry Arnoux, 16-Nov-2023)

Ref Expression
Hypotheses pmtrcnel.s S = SymGrp D
pmtrcnel.t T = pmTrsp D
pmtrcnel.b B = Base S
pmtrcnel.j J = F I
pmtrcnel.d φ D V
pmtrcnel.f φ F B
pmtrcnel.i φ I dom F I
Assertion pmtrcnel φ dom T I J F I dom F I I

Proof

Step Hyp Ref Expression
1 pmtrcnel.s S = SymGrp D
2 pmtrcnel.t T = pmTrsp D
3 pmtrcnel.b B = Base S
4 pmtrcnel.j J = F I
5 pmtrcnel.d φ D V
6 pmtrcnel.f φ F B
7 pmtrcnel.i φ I dom F I
8 mvdco dom T I J F I dom T I J I dom F I
9 difss F I F
10 dmss F I F dom F I dom F
11 9 10 ax-mp dom F I dom F
12 11 7 sseldi φ I dom F
13 1 3 symgbasf1o F B F : D 1-1 onto D
14 f1of F : D 1-1 onto D F : D D
15 6 13 14 3syl φ F : D D
16 15 fdmd φ dom F = D
17 12 16 eleqtrd φ I D
18 15 17 ffvelrnd φ F I D
19 4 18 eqeltrid φ J D
20 17 19 prssd φ I J D
21 15 ffnd φ F Fn D
22 fnelnfp F Fn D I D I dom F I F I I
23 22 biimpa F Fn D I D I dom F I F I I
24 21 17 7 23 syl21anc φ F I I
25 24 necomd φ I F I
26 4 a1i φ J = F I
27 25 26 neeqtrrd φ I J
28 pr2nelem I D J D I J I J 2 𝑜
29 17 19 27 28 syl3anc φ I J 2 𝑜
30 2 pmtrmvd D V I J D I J 2 𝑜 dom T I J I = I J
31 5 20 29 30 syl3anc φ dom T I J I = I J
32 6 13 syl φ F : D 1-1 onto D
33 f1omvdmvd F : D 1-1 onto D I dom F I F I dom F I I
34 32 7 33 syl2anc φ F I dom F I I
35 4 34 eqeltrid φ J dom F I I
36 35 eldifad φ J dom F I
37 7 36 prssd φ I J dom F I
38 31 37 eqsstrd φ dom T I J I dom F I
39 ssequn1 dom T I J I dom F I dom T I J I dom F I = dom F I
40 38 39 sylib φ dom T I J I dom F I = dom F I
41 8 40 sseqtrid φ dom T I J F I dom F I
42 41 sselda φ x dom T I J F I x dom F I
43 simpr φ x = I x = I
44 eqid ran T = ran T
45 2 44 pmtrrn D V I J D I J 2 𝑜 T I J ran T
46 5 20 29 45 syl3anc φ T I J ran T
47 2 44 pmtrff1o T I J ran T T I J : D 1-1 onto D
48 46 47 syl φ T I J : D 1-1 onto D
49 f1oco T I J : D 1-1 onto D F : D 1-1 onto D T I J F : D 1-1 onto D
50 48 32 49 syl2anc φ T I J F : D 1-1 onto D
51 f1ofn T I J F : D 1-1 onto D T I J F Fn D
52 50 51 syl φ T I J F Fn D
53 15 17 fvco3d φ T I J F I = T I J F I
54 26 eqcomd φ F I = J
55 54 fveq2d φ T I J F I = T I J J
56 2 pmtrprfv2 D V I D J D I J T I J J = I
57 5 17 19 27 56 syl13anc φ T I J J = I
58 53 55 57 3eqtrd φ T I J F I = I
59 nne ¬ T I J F I I T I J F I = I
60 58 59 sylibr φ ¬ T I J F I I
61 fnelnfp T I J F Fn D I D I dom T I J F I T I J F I I
62 61 notbid T I J F Fn D I D ¬ I dom T I J F I ¬ T I J F I I
63 62 biimpar T I J F Fn D I D ¬ T I J F I I ¬ I dom T I J F I
64 52 17 60 63 syl21anc φ ¬ I dom T I J F I
65 64 adantr φ x = I ¬ I dom T I J F I
66 43 65 eqneltrd φ x = I ¬ x dom T I J F I
67 66 ex φ x = I ¬ x dom T I J F I
68 67 necon2ad φ x dom T I J F I x I
69 68 imp φ x dom T I J F I x I
70 eldifsn x dom F I I x dom F I x I
71 42 69 70 sylanbrc φ x dom T I J F I x dom F I I
72 71 ex φ x dom T I J F I x dom F I I
73 72 ssrdv φ dom T I J F I dom F I I