| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrcnel.s |
|
| 2 |
|
pmtrcnel.t |
|
| 3 |
|
pmtrcnel.b |
|
| 4 |
|
pmtrcnel.j |
|
| 5 |
|
pmtrcnel.d |
|
| 6 |
|
pmtrcnel.f |
|
| 7 |
|
pmtrcnel.i |
|
| 8 |
|
mvdco |
|
| 9 |
|
difss |
|
| 10 |
|
dmss |
|
| 11 |
9 10
|
ax-mp |
|
| 12 |
11 7
|
sselid |
|
| 13 |
1 3
|
symgbasf1o |
|
| 14 |
|
f1of |
|
| 15 |
6 13 14
|
3syl |
|
| 16 |
15
|
fdmd |
|
| 17 |
12 16
|
eleqtrd |
|
| 18 |
15 17
|
ffvelcdmd |
|
| 19 |
4 18
|
eqeltrid |
|
| 20 |
17 19
|
prssd |
|
| 21 |
15
|
ffnd |
|
| 22 |
|
fnelnfp |
|
| 23 |
22
|
biimpa |
|
| 24 |
21 17 7 23
|
syl21anc |
|
| 25 |
24
|
necomd |
|
| 26 |
4
|
a1i |
|
| 27 |
25 26
|
neeqtrrd |
|
| 28 |
|
enpr2 |
|
| 29 |
17 19 27 28
|
syl3anc |
|
| 30 |
2
|
pmtrmvd |
|
| 31 |
5 20 29 30
|
syl3anc |
|
| 32 |
6 13
|
syl |
|
| 33 |
|
f1omvdmvd |
|
| 34 |
32 7 33
|
syl2anc |
|
| 35 |
4 34
|
eqeltrid |
|
| 36 |
35
|
eldifad |
|
| 37 |
7 36
|
prssd |
|
| 38 |
31 37
|
eqsstrd |
|
| 39 |
|
ssequn1 |
|
| 40 |
38 39
|
sylib |
|
| 41 |
8 40
|
sseqtrid |
|
| 42 |
41
|
sselda |
|
| 43 |
|
simpr |
|
| 44 |
|
eqid |
|
| 45 |
2 44
|
pmtrrn |
|
| 46 |
5 20 29 45
|
syl3anc |
|
| 47 |
2 44
|
pmtrff1o |
|
| 48 |
46 47
|
syl |
|
| 49 |
|
f1oco |
|
| 50 |
48 32 49
|
syl2anc |
|
| 51 |
|
f1ofn |
|
| 52 |
50 51
|
syl |
|
| 53 |
15 17
|
fvco3d |
|
| 54 |
26
|
eqcomd |
|
| 55 |
54
|
fveq2d |
|
| 56 |
2
|
pmtrprfv2 |
|
| 57 |
5 17 19 27 56
|
syl13anc |
|
| 58 |
53 55 57
|
3eqtrd |
|
| 59 |
|
nne |
|
| 60 |
58 59
|
sylibr |
|
| 61 |
|
fnelnfp |
|
| 62 |
61
|
notbid |
|
| 63 |
62
|
biimpar |
|
| 64 |
52 17 60 63
|
syl21anc |
|
| 65 |
64
|
adantr |
|
| 66 |
43 65
|
eqneltrd |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
necon2ad |
|
| 69 |
68
|
imp |
|
| 70 |
|
eldifsn |
|
| 71 |
42 69 70
|
sylanbrc |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
ssrdv |
|