| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pnrmtop |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | opncld |  | 
						
							| 4 | 1 3 | sylan |  | 
						
							| 5 |  | pnrmcld |  | 
						
							| 6 | 4 5 | syldan |  | 
						
							| 7 | 1 | ad2antrr |  | 
						
							| 8 |  | elmapi |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 9 | ffvelcdmda |  | 
						
							| 11 | 2 | opncld |  | 
						
							| 12 | 7 10 11 | syl2anc |  | 
						
							| 13 | 12 | fmpttd |  | 
						
							| 14 |  | fvex |  | 
						
							| 15 |  | nnex |  | 
						
							| 16 | 14 15 | elmap |  | 
						
							| 17 | 13 16 | sylibr |  | 
						
							| 18 |  | iundif2 |  | 
						
							| 19 |  | ffn |  | 
						
							| 20 |  | fniinfv |  | 
						
							| 21 | 9 19 20 | 3syl |  | 
						
							| 22 | 21 | difeq2d |  | 
						
							| 23 | 18 22 | eqtrid |  | 
						
							| 24 |  | uniexg |  | 
						
							| 25 | 24 | difexd |  | 
						
							| 26 | 25 | ralrimivw |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 |  | dfiun2g |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 | rnmpt |  | 
						
							| 32 | 31 | unieqi |  | 
						
							| 33 | 29 32 | eqtr4di |  | 
						
							| 34 | 23 33 | eqtr3d |  | 
						
							| 35 |  | rneq |  | 
						
							| 36 | 35 | unieqd |  | 
						
							| 37 | 36 | rspceeqv |  | 
						
							| 38 | 17 34 37 | syl2anc |  | 
						
							| 39 | 38 | ad2ant2r |  | 
						
							| 40 |  | difeq2 |  | 
						
							| 41 | 40 | eqcomd |  | 
						
							| 42 |  | elssuni |  | 
						
							| 43 |  | dfss4 |  | 
						
							| 44 | 42 43 | sylib |  | 
						
							| 45 | 41 44 | sylan9eqr |  | 
						
							| 46 | 45 | ad2ant2l |  | 
						
							| 47 | 46 | eqeq1d |  | 
						
							| 48 | 47 | rexbidv |  | 
						
							| 49 | 39 48 | mpbid |  | 
						
							| 50 | 6 49 | rexlimddv |  |