Step |
Hyp |
Ref |
Expression |
1 |
|
pnrmtop |
|
2 |
|
eqid |
|
3 |
2
|
opncld |
|
4 |
1 3
|
sylan |
|
5 |
|
pnrmcld |
|
6 |
4 5
|
syldan |
|
7 |
1
|
ad2antrr |
|
8 |
|
elmapi |
|
9 |
8
|
adantl |
|
10 |
9
|
ffvelrnda |
|
11 |
2
|
opncld |
|
12 |
7 10 11
|
syl2anc |
|
13 |
12
|
fmpttd |
|
14 |
|
fvex |
|
15 |
|
nnex |
|
16 |
14 15
|
elmap |
|
17 |
13 16
|
sylibr |
|
18 |
|
iundif2 |
|
19 |
|
ffn |
|
20 |
|
fniinfv |
|
21 |
9 19 20
|
3syl |
|
22 |
21
|
difeq2d |
|
23 |
18 22
|
eqtrid |
|
24 |
|
uniexg |
|
25 |
24
|
difexd |
|
26 |
25
|
ralrimivw |
|
27 |
26
|
adantr |
|
28 |
|
dfiun2g |
|
29 |
27 28
|
syl |
|
30 |
|
eqid |
|
31 |
30
|
rnmpt |
|
32 |
31
|
unieqi |
|
33 |
29 32
|
eqtr4di |
|
34 |
23 33
|
eqtr3d |
|
35 |
|
rneq |
|
36 |
35
|
unieqd |
|
37 |
36
|
rspceeqv |
|
38 |
17 34 37
|
syl2anc |
|
39 |
38
|
ad2ant2r |
|
40 |
|
difeq2 |
|
41 |
40
|
eqcomd |
|
42 |
|
elssuni |
|
43 |
|
dfss4 |
|
44 |
42 43
|
sylib |
|
45 |
41 44
|
sylan9eqr |
|
46 |
45
|
ad2ant2l |
|
47 |
46
|
eqeq1d |
|
48 |
47
|
rexbidv |
|
49 |
39 48
|
mpbid |
|
50 |
6 49
|
rexlimddv |
|