Metamath Proof Explorer


Theorem pnrmopn

Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion pnrmopn J PNrm A J f Clsd J A = ran f

Proof

Step Hyp Ref Expression
1 pnrmtop J PNrm J Top
2 eqid J = J
3 2 opncld J Top A J J A Clsd J
4 1 3 sylan J PNrm A J J A Clsd J
5 pnrmcld J PNrm J A Clsd J g J J A = ran g
6 4 5 syldan J PNrm A J g J J A = ran g
7 1 ad2antrr J PNrm g J x J Top
8 elmapi g J g : J
9 8 adantl J PNrm g J g : J
10 9 ffvelrnda J PNrm g J x g x J
11 2 opncld J Top g x J J g x Clsd J
12 7 10 11 syl2anc J PNrm g J x J g x Clsd J
13 12 fmpttd J PNrm g J x J g x : Clsd J
14 fvex Clsd J V
15 nnex V
16 14 15 elmap x J g x Clsd J x J g x : Clsd J
17 13 16 sylibr J PNrm g J x J g x Clsd J
18 iundif2 x J g x = J x g x
19 ffn g : J g Fn
20 fniinfv g Fn x g x = ran g
21 9 19 20 3syl J PNrm g J x g x = ran g
22 21 difeq2d J PNrm g J J x g x = J ran g
23 18 22 eqtrid J PNrm g J x J g x = J ran g
24 uniexg J PNrm J V
25 24 difexd J PNrm J g x V
26 25 ralrimivw J PNrm x J g x V
27 26 adantr J PNrm g J x J g x V
28 dfiun2g x J g x V x J g x = f | x f = J g x
29 27 28 syl J PNrm g J x J g x = f | x f = J g x
30 eqid x J g x = x J g x
31 30 rnmpt ran x J g x = f | x f = J g x
32 31 unieqi ran x J g x = f | x f = J g x
33 29 32 eqtr4di J PNrm g J x J g x = ran x J g x
34 23 33 eqtr3d J PNrm g J J ran g = ran x J g x
35 rneq f = x J g x ran f = ran x J g x
36 35 unieqd f = x J g x ran f = ran x J g x
37 36 rspceeqv x J g x Clsd J J ran g = ran x J g x f Clsd J J ran g = ran f
38 17 34 37 syl2anc J PNrm g J f Clsd J J ran g = ran f
39 38 ad2ant2r J PNrm A J g J J A = ran g f Clsd J J ran g = ran f
40 difeq2 J A = ran g J J A = J ran g
41 40 eqcomd J A = ran g J ran g = J J A
42 elssuni A J A J
43 dfss4 A J J J A = A
44 42 43 sylib A J J J A = A
45 41 44 sylan9eqr A J J A = ran g J ran g = A
46 45 ad2ant2l J PNrm A J g J J A = ran g J ran g = A
47 46 eqeq1d J PNrm A J g J J A = ran g J ran g = ran f A = ran f
48 47 rexbidv J PNrm A J g J J A = ran g f Clsd J J ran g = ran f f Clsd J A = ran f
49 39 48 mpbid J PNrm A J g J J A = ran g f Clsd J A = ran f
50 6 49 rexlimddv J PNrm A J f Clsd J A = ran f