Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pnrmopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnrmtop | |
|
2 | eqid | |
|
3 | 2 | opncld | |
4 | 1 3 | sylan | |
5 | pnrmcld | |
|
6 | 4 5 | syldan | |
7 | 1 | ad2antrr | |
8 | elmapi | |
|
9 | 8 | adantl | |
10 | 9 | ffvelcdmda | |
11 | 2 | opncld | |
12 | 7 10 11 | syl2anc | |
13 | 12 | fmpttd | |
14 | fvex | |
|
15 | nnex | |
|
16 | 14 15 | elmap | |
17 | 13 16 | sylibr | |
18 | iundif2 | |
|
19 | ffn | |
|
20 | fniinfv | |
|
21 | 9 19 20 | 3syl | |
22 | 21 | difeq2d | |
23 | 18 22 | eqtrid | |
24 | uniexg | |
|
25 | 24 | difexd | |
26 | 25 | ralrimivw | |
27 | 26 | adantr | |
28 | dfiun2g | |
|
29 | 27 28 | syl | |
30 | eqid | |
|
31 | 30 | rnmpt | |
32 | 31 | unieqi | |
33 | 29 32 | eqtr4di | |
34 | 23 33 | eqtr3d | |
35 | rneq | |
|
36 | 35 | unieqd | |
37 | 36 | rspceeqv | |
38 | 17 34 37 | syl2anc | |
39 | 38 | ad2ant2r | |
40 | difeq2 | |
|
41 | 40 | eqcomd | |
42 | elssuni | |
|
43 | dfss4 | |
|
44 | 42 43 | sylib | |
45 | 41 44 | sylan9eqr | |
46 | 45 | ad2ant2l | |
47 | 46 | eqeq1d | |
48 | 47 | rexbidv | |
49 | 39 48 | mpbid | |
50 | 6 49 | rexlimddv | |