| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pnrmtop |
|
| 2 |
|
eqid |
|
| 3 |
2
|
opncld |
|
| 4 |
1 3
|
sylan |
|
| 5 |
|
pnrmcld |
|
| 6 |
4 5
|
syldan |
|
| 7 |
1
|
ad2antrr |
|
| 8 |
|
elmapi |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
ffvelcdmda |
|
| 11 |
2
|
opncld |
|
| 12 |
7 10 11
|
syl2anc |
|
| 13 |
12
|
fmpttd |
|
| 14 |
|
fvex |
|
| 15 |
|
nnex |
|
| 16 |
14 15
|
elmap |
|
| 17 |
13 16
|
sylibr |
|
| 18 |
|
iundif2 |
|
| 19 |
|
ffn |
|
| 20 |
|
fniinfv |
|
| 21 |
9 19 20
|
3syl |
|
| 22 |
21
|
difeq2d |
|
| 23 |
18 22
|
eqtrid |
|
| 24 |
|
uniexg |
|
| 25 |
24
|
difexd |
|
| 26 |
25
|
ralrimivw |
|
| 27 |
26
|
adantr |
|
| 28 |
|
dfiun2g |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
eqid |
|
| 31 |
30
|
rnmpt |
|
| 32 |
31
|
unieqi |
|
| 33 |
29 32
|
eqtr4di |
|
| 34 |
23 33
|
eqtr3d |
|
| 35 |
|
rneq |
|
| 36 |
35
|
unieqd |
|
| 37 |
36
|
rspceeqv |
|
| 38 |
17 34 37
|
syl2anc |
|
| 39 |
38
|
ad2ant2r |
|
| 40 |
|
difeq2 |
|
| 41 |
40
|
eqcomd |
|
| 42 |
|
elssuni |
|
| 43 |
|
dfss4 |
|
| 44 |
42 43
|
sylib |
|
| 45 |
41 44
|
sylan9eqr |
|
| 46 |
45
|
ad2ant2l |
|
| 47 |
46
|
eqeq1d |
|
| 48 |
47
|
rexbidv |
|
| 49 |
39 48
|
mpbid |
|
| 50 |
6 49
|
rexlimddv |
|