Metamath Proof Explorer


Theorem pnrmopn

Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion pnrmopn JPNrmAJfClsdJA=ranf

Proof

Step Hyp Ref Expression
1 pnrmtop JPNrmJTop
2 eqid J=J
3 2 opncld JTopAJJAClsdJ
4 1 3 sylan JPNrmAJJAClsdJ
5 pnrmcld JPNrmJAClsdJgJJA=rang
6 4 5 syldan JPNrmAJgJJA=rang
7 1 ad2antrr JPNrmgJxJTop
8 elmapi gJg:J
9 8 adantl JPNrmgJg:J
10 9 ffvelcdmda JPNrmgJxgxJ
11 2 opncld JTopgxJJgxClsdJ
12 7 10 11 syl2anc JPNrmgJxJgxClsdJ
13 12 fmpttd JPNrmgJxJgx:ClsdJ
14 fvex ClsdJV
15 nnex V
16 14 15 elmap xJgxClsdJxJgx:ClsdJ
17 13 16 sylibr JPNrmgJxJgxClsdJ
18 iundif2 xJgx=Jxgx
19 ffn g:JgFn
20 fniinfv gFnxgx=rang
21 9 19 20 3syl JPNrmgJxgx=rang
22 21 difeq2d JPNrmgJJxgx=Jrang
23 18 22 eqtrid JPNrmgJxJgx=Jrang
24 uniexg JPNrmJV
25 24 difexd JPNrmJgxV
26 25 ralrimivw JPNrmxJgxV
27 26 adantr JPNrmgJxJgxV
28 dfiun2g xJgxVxJgx=f|xf=Jgx
29 27 28 syl JPNrmgJxJgx=f|xf=Jgx
30 eqid xJgx=xJgx
31 30 rnmpt ranxJgx=f|xf=Jgx
32 31 unieqi ranxJgx=f|xf=Jgx
33 29 32 eqtr4di JPNrmgJxJgx=ranxJgx
34 23 33 eqtr3d JPNrmgJJrang=ranxJgx
35 rneq f=xJgxranf=ranxJgx
36 35 unieqd f=xJgxranf=ranxJgx
37 36 rspceeqv xJgxClsdJJrang=ranxJgxfClsdJJrang=ranf
38 17 34 37 syl2anc JPNrmgJfClsdJJrang=ranf
39 38 ad2ant2r JPNrmAJgJJA=rangfClsdJJrang=ranf
40 difeq2 JA=rangJJA=Jrang
41 40 eqcomd JA=rangJrang=JJA
42 elssuni AJAJ
43 dfss4 AJJJA=A
44 42 43 sylib AJJJA=A
45 41 44 sylan9eqr AJJA=rangJrang=A
46 45 ad2ant2l JPNrmAJgJJA=rangJrang=A
47 46 eqeq1d JPNrmAJgJJA=rangJrang=ranfA=ranf
48 47 rexbidv JPNrmAJgJJA=rangfClsdJJrang=ranffClsdJA=ranf
49 39 48 mpbid JPNrmAJgJJA=rangfClsdJA=ranf
50 6 49 rexlimddv JPNrmAJfClsdJA=ranf