Metamath Proof Explorer


Theorem pnrmopn

Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion pnrmopn J PNrm A J f Clsd J A = ran f

Proof

Step Hyp Ref Expression
1 pnrmtop J PNrm J Top
2 eqid J = J
3 2 opncld J Top A J J A Clsd J
4 1 3 sylan J PNrm A J J A Clsd J
5 pnrmcld J PNrm J A Clsd J g J J A = ran g
6 4 5 syldan J PNrm A J g J J A = ran g
7 1 ad2antrr J PNrm g J x J Top
8 elmapi g J g : J
9 8 adantl J PNrm g J g : J
10 9 ffvelrnda J PNrm g J x g x J
11 2 opncld J Top g x J J g x Clsd J
12 7 10 11 syl2anc J PNrm g J x J g x Clsd J
13 12 fmpttd J PNrm g J x J g x : Clsd J
14 fvex Clsd J V
15 nnex V
16 14 15 elmap x J g x Clsd J x J g x : Clsd J
17 13 16 sylibr J PNrm g J x J g x Clsd J
18 iundif2 x J g x = J x g x
19 ffn g : J g Fn
20 fniinfv g Fn x g x = ran g
21 9 19 20 3syl J PNrm g J x g x = ran g
22 21 difeq2d J PNrm g J J x g x = J ran g
23 18 22 syl5eq J PNrm g J x J g x = J ran g
24 uniexg J PNrm J V
25 difexg J V J g x V
26 24 25 syl J PNrm J g x V
27 26 ralrimivw J PNrm x J g x V
28 27 adantr J PNrm g J x J g x V
29 dfiun2g x J g x V x J g x = f | x f = J g x
30 28 29 syl J PNrm g J x J g x = f | x f = J g x
31 eqid x J g x = x J g x
32 31 rnmpt ran x J g x = f | x f = J g x
33 32 unieqi ran x J g x = f | x f = J g x
34 30 33 eqtr4di J PNrm g J x J g x = ran x J g x
35 23 34 eqtr3d J PNrm g J J ran g = ran x J g x
36 rneq f = x J g x ran f = ran x J g x
37 36 unieqd f = x J g x ran f = ran x J g x
38 37 rspceeqv x J g x Clsd J J ran g = ran x J g x f Clsd J J ran g = ran f
39 17 35 38 syl2anc J PNrm g J f Clsd J J ran g = ran f
40 39 ad2ant2r J PNrm A J g J J A = ran g f Clsd J J ran g = ran f
41 difeq2 J A = ran g J J A = J ran g
42 41 eqcomd J A = ran g J ran g = J J A
43 elssuni A J A J
44 dfss4 A J J J A = A
45 43 44 sylib A J J J A = A
46 42 45 sylan9eqr A J J A = ran g J ran g = A
47 46 ad2ant2l J PNrm A J g J J A = ran g J ran g = A
48 47 eqeq1d J PNrm A J g J J A = ran g J ran g = ran f A = ran f
49 48 rexbidv J PNrm A J g J J A = ran g f Clsd J J ran g = ran f f Clsd J A = ran f
50 40 49 mpbid J PNrm A J g J J A = ran g f Clsd J A = ran f
51 6 50 rexlimddv J PNrm A J f Clsd J A = ran f