Metamath Proof Explorer


Theorem probmeasb

Description: Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion probmeasb MmeasuresSASMA+xSMxAMAProb

Proof

Step Hyp Ref Expression
1 measinb MmeasuresSASySMyAmeasuresS
2 measdivcstALTV ySMyAmeasuresSMA+xSySMyAx÷𝑒MAmeasuresS
3 1 2 stoic3 MmeasuresSASMA+xSySMyAx÷𝑒MAmeasuresS
4 eqidd MmeasuresSASMA+xSySMyA=ySMyA
5 simpr MmeasuresSASMA+xSy=xy=x
6 5 ineq1d MmeasuresSASMA+xSy=xyA=xA
7 6 fveq2d MmeasuresSASMA+xSy=xMyA=MxA
8 simpr MmeasuresSASMA+xSxS
9 simp1 MmeasuresSASMA+MmeasuresS
10 9 adantr MmeasuresSASMA+xSMmeasuresS
11 measbase MmeasuresSSransigAlgebra
12 10 11 syl MmeasuresSASMA+xSSransigAlgebra
13 simp2 MmeasuresSASMA+AS
14 13 adantr MmeasuresSASMA+xSAS
15 inelsiga SransigAlgebraxSASxAS
16 12 8 14 15 syl3anc MmeasuresSASMA+xSxAS
17 measvxrge0 MmeasuresSxASMxA0+∞
18 10 16 17 syl2anc MmeasuresSASMA+xSMxA0+∞
19 4 7 8 18 fvmptd MmeasuresSASMA+xSySMyAx=MxA
20 19 oveq1d MmeasuresSASMA+xSySMyAx÷𝑒MA=MxA÷𝑒MA
21 iccssxr 0+∞*
22 21 18 sselid MmeasuresSASMA+xSMxA*
23 simp3 MmeasuresSASMA+MA+
24 23 adantr MmeasuresSASMA+xSMA+
25 24 rpred MmeasuresSASMA+xSMA
26 0xr 0*
27 pnfxr +∞*
28 iccgelb 0*+∞*MxA0+∞0MxA
29 26 27 28 mp3an12 MxA0+∞0MxA
30 18 29 syl MmeasuresSASMA+xS0MxA
31 inss2 xAA
32 31 a1i MmeasuresSASMA+xSxAA
33 10 16 14 32 measssd MmeasuresSASMA+xSMxAMA
34 xrrege0 MxA*MA0MxAMxAMAMxA
35 22 25 30 33 34 syl22anc MmeasuresSASMA+xSMxA
36 24 rpne0d MmeasuresSASMA+xSMA0
37 rexdiv MxAMAMA0MxA÷𝑒MA=MxAMA
38 35 25 36 37 syl3anc MmeasuresSASMA+xSMxA÷𝑒MA=MxAMA
39 20 38 eqtrd MmeasuresSASMA+xSySMyAx÷𝑒MA=MxAMA
40 39 mpteq2dva MmeasuresSASMA+xSySMyAx÷𝑒MA=xSMxAMA
41 35 24 rerpdivcld MmeasuresSASMA+xSMxAMA
42 41 ralrimiva MmeasuresSASMA+xSMxAMA
43 dmmptg xSMxAMAdomxSMxAMA=S
44 42 43 syl MmeasuresSASMA+domxSMxAMA=S
45 44 fveq2d MmeasuresSASMA+measuresdomxSMxAMA=measuresS
46 45 eqcomd MmeasuresSASMA+measuresS=measuresdomxSMxAMA
47 3 40 46 3eltr3d MmeasuresSASMA+xSMxAMAmeasuresdomxSMxAMA
48 measbasedom xSMxAMAranmeasuresxSMxAMAmeasuresdomxSMxAMA
49 47 48 sylibr MmeasuresSASMA+xSMxAMAranmeasures
50 44 unieqd MmeasuresSASMA+domxSMxAMA=S
51 50 fveq2d MmeasuresSASMA+xSMxAMAdomxSMxAMA=xSMxAMAS
52 eqidd MmeasuresSASMA+xSMxAMA=xSMxAMA
53 23 adantr MmeasuresSASMA+x=SMA+
54 53 rpcnd MmeasuresSASMA+x=SMA
55 23 rpne0d MmeasuresSASMA+MA0
56 55 adantr MmeasuresSASMA+x=SMA0
57 simpr MmeasuresSASMA+x=Sx=S
58 57 ineq1d MmeasuresSASMA+x=SxA=SA
59 incom SA=AS
60 elssuni ASAS
61 df-ss ASAS=A
62 60 61 sylib ASAS=A
63 59 62 eqtrid ASSA=A
64 13 63 syl MmeasuresSASMA+SA=A
65 64 adantr MmeasuresSASMA+x=SSA=A
66 58 65 eqtrd MmeasuresSASMA+x=SxA=A
67 66 fveq2d MmeasuresSASMA+x=SMxA=MA
68 54 56 67 diveq1bd MmeasuresSASMA+x=SMxAMA=1
69 sgon SransigAlgebraSsigAlgebraS
70 baselsiga SsigAlgebraSSS
71 9 11 69 70 4syl MmeasuresSASMA+SS
72 1red MmeasuresSASMA+1
73 52 68 71 72 fvmptd MmeasuresSASMA+xSMxAMAS=1
74 51 73 eqtrd MmeasuresSASMA+xSMxAMAdomxSMxAMA=1
75 elprob xSMxAMAProbxSMxAMAranmeasuresxSMxAMAdomxSMxAMA=1
76 49 74 75 sylanbrc MmeasuresSASMA+xSMxAMAProb