Metamath Proof Explorer


Theorem psrass23l

Description: Associative identity for the ring of power series. Part of psrass23 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 14-Aug-2019)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psrass.d D=f0I|f-1Fin
psrass.t ×˙=S
psrass.b B=BaseS
psrass.x φXB
psrass.y φYB
psrass23l.k K=BaseR
psrass23l.n ·˙=S
psrass23l.a φAK
Assertion psrass23l φA·˙X×˙Y=A·˙X×˙Y

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psrass.d D=f0I|f-1Fin
5 psrass.t ×˙=S
6 psrass.b B=BaseS
7 psrass.x φXB
8 psrass.y φYB
9 psrass23l.k K=BaseR
10 psrass23l.n ·˙=S
11 psrass23l.a φAK
12 eqid BaseR=BaseR
13 eqid R=R
14 11 adantr φkDAK
15 14 9 eleqtrdi φkDABaseR
16 15 adantr φkDxyD|yfkABaseR
17 7 ad2antrr φkDxyD|yfkXB
18 ssrab2 yD|yfkD
19 simpr φkDxyD|yfkxyD|yfk
20 18 19 sselid φkDxyD|yfkxD
21 1 10 12 6 13 4 16 17 20 psrvscaval φkDxyD|yfkA·˙Xx=ARXx
22 21 oveq1d φkDxyD|yfkA·˙XxRYkfx=ARXxRYkfx
23 3 ad2antrr φkDxyD|yfkRRing
24 1 12 4 6 17 psrelbas φkDxyD|yfkX:DBaseR
25 24 20 ffvelcdmd φkDxyD|yfkXxBaseR
26 8 ad2antrr φkDxyD|yfkYB
27 1 12 4 6 26 psrelbas φkDxyD|yfkY:DBaseR
28 eqid yD|yfk=yD|yfk
29 4 28 psrbagconcl kDxyD|yfkkfxyD|yfk
30 29 adantll φkDxyD|yfkkfxyD|yfk
31 18 30 sselid φkDxyD|yfkkfxD
32 27 31 ffvelcdmd φkDxyD|yfkYkfxBaseR
33 12 13 ringass RRingABaseRXxBaseRYkfxBaseRARXxRYkfx=ARXxRYkfx
34 23 16 25 32 33 syl13anc φkDxyD|yfkARXxRYkfx=ARXxRYkfx
35 22 34 eqtrd φkDxyD|yfkA·˙XxRYkfx=ARXxRYkfx
36 35 mpteq2dva φkDxyD|yfkA·˙XxRYkfx=xyD|yfkARXxRYkfx
37 36 oveq2d φkDRxyD|yfkA·˙XxRYkfx=RxyD|yfkARXxRYkfx
38 eqid 0R=0R
39 3 adantr φkDRRing
40 4 psrbaglefi kDyD|yfkFin
41 40 adantl φkDyD|yfkFin
42 12 13 23 25 32 ringcld φkDxyD|yfkXxRYkfxBaseR
43 ovex 0IV
44 4 43 rabex2 DV
45 44 mptrabex xyD|yfkXxRYkfxV
46 funmpt FunxyD|yfkXxRYkfx
47 fvex 0RV
48 45 46 47 3pm3.2i xyD|yfkXxRYkfxVFunxyD|yfkXxRYkfx0RV
49 48 a1i φkDxyD|yfkXxRYkfxVFunxyD|yfkXxRYkfx0RV
50 suppssdm xyD|yfkXxRYkfxsupp0RdomxyD|yfkXxRYkfx
51 eqid xyD|yfkXxRYkfx=xyD|yfkXxRYkfx
52 51 dmmptss domxyD|yfkXxRYkfxyD|yfk
53 50 52 sstri xyD|yfkXxRYkfxsupp0RyD|yfk
54 53 a1i φkDxyD|yfkXxRYkfxsupp0RyD|yfk
55 suppssfifsupp xyD|yfkXxRYkfxVFunxyD|yfkXxRYkfx0RVyD|yfkFinxyD|yfkXxRYkfxsupp0RyD|yfkfinSupp0RxyD|yfkXxRYkfx
56 49 41 54 55 syl12anc φkDfinSupp0RxyD|yfkXxRYkfx
57 12 38 13 39 41 15 42 56 gsummulc2 φkDRxyD|yfkARXxRYkfx=ARRxyD|yfkXxRYkfx
58 37 57 eqtrd φkDRxyD|yfkA·˙XxRYkfx=ARRxyD|yfkXxRYkfx
59 58 mpteq2dva φkDRxyD|yfkA·˙XxRYkfx=kDARRxyD|yfkXxRYkfx
60 1 10 9 6 3 11 7 psrvscacl φA·˙XB
61 1 6 13 5 4 60 8 psrmulfval φA·˙X×˙Y=kDRxyD|yfkA·˙XxRYkfx
62 1 6 5 3 7 8 psrmulcl φX×˙YB
63 1 10 9 6 13 4 11 62 psrvsca φA·˙X×˙Y=D×ARfX×˙Y
64 44 a1i φDV
65 ovexd φkDRxyD|yfkXxRYkfxV
66 fconstmpt D×A=kDA
67 66 a1i φD×A=kDA
68 1 6 13 5 4 7 8 psrmulfval φX×˙Y=kDRxyD|yfkXxRYkfx
69 64 14 65 67 68 offval2 φD×ARfX×˙Y=kDARRxyD|yfkXxRYkfx
70 63 69 eqtrd φA·˙X×˙Y=kDARRxyD|yfkXxRYkfx
71 59 61 70 3eqtr4d φA·˙X×˙Y=A·˙X×˙Y