Metamath Proof Explorer


Theorem psrdi

Description: Distributive law for the ring of power series (left-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psrass.d D=f0I|f-1Fin
psrass.t ×˙=S
psrass.b B=BaseS
psrass.x φXB
psrass.y φYB
psrass.z φZB
psrdi.a +˙=+S
Assertion psrdi φX×˙Y+˙Z=X×˙Y+˙X×˙Z

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psrass.d D=f0I|f-1Fin
5 psrass.t ×˙=S
6 psrass.b B=BaseS
7 psrass.x φXB
8 psrass.y φYB
9 psrass.z φZB
10 psrdi.a +˙=+S
11 eqid +R=+R
12 1 6 11 10 8 9 psradd φY+˙Z=Y+RfZ
13 12 fveq1d φY+˙Zkfx=Y+RfZkfx
14 13 ad2antrr φkDxyD|yfkY+˙Zkfx=Y+RfZkfx
15 ssrab2 yD|yfkD
16 simplr φkDxyD|yfkkD
17 simpr φkDxyD|yfkxyD|yfk
18 eqid yD|yfk=yD|yfk
19 4 18 psrbagconcl kDxyD|yfkkfxyD|yfk
20 16 17 19 syl2anc φkDxyD|yfkkfxyD|yfk
21 15 20 sselid φkDxyD|yfkkfxD
22 eqid BaseR=BaseR
23 1 22 4 6 8 psrelbas φY:DBaseR
24 23 ad2antrr φkDxyD|yfkY:DBaseR
25 24 ffnd φkDxyD|yfkYFnD
26 1 22 4 6 9 psrelbas φZ:DBaseR
27 26 ad2antrr φkDxyD|yfkZ:DBaseR
28 27 ffnd φkDxyD|yfkZFnD
29 ovex 0IV
30 4 29 rabex2 DV
31 30 a1i φkDxyD|yfkDV
32 inidm DD=D
33 eqidd φkDxyD|yfkkfxDYkfx=Ykfx
34 eqidd φkDxyD|yfkkfxDZkfx=Zkfx
35 25 28 31 31 32 33 34 ofval φkDxyD|yfkkfxDY+RfZkfx=Ykfx+RZkfx
36 21 35 mpdan φkDxyD|yfkY+RfZkfx=Ykfx+RZkfx
37 14 36 eqtrd φkDxyD|yfkY+˙Zkfx=Ykfx+RZkfx
38 37 oveq2d φkDxyD|yfkXxRY+˙Zkfx=XxRYkfx+RZkfx
39 3 ad2antrr φkDxyD|yfkRRing
40 1 22 4 6 7 psrelbas φX:DBaseR
41 40 ad2antrr φkDxyD|yfkX:DBaseR
42 15 17 sselid φkDxyD|yfkxD
43 41 42 ffvelcdmd φkDxyD|yfkXxBaseR
44 24 21 ffvelcdmd φkDxyD|yfkYkfxBaseR
45 27 21 ffvelcdmd φkDxyD|yfkZkfxBaseR
46 eqid R=R
47 22 11 46 ringdi RRingXxBaseRYkfxBaseRZkfxBaseRXxRYkfx+RZkfx=XxRYkfx+RXxRZkfx
48 39 43 44 45 47 syl13anc φkDxyD|yfkXxRYkfx+RZkfx=XxRYkfx+RXxRZkfx
49 38 48 eqtrd φkDxyD|yfkXxRY+˙Zkfx=XxRYkfx+RXxRZkfx
50 49 mpteq2dva φkDxyD|yfkXxRY+˙Zkfx=xyD|yfkXxRYkfx+RXxRZkfx
51 4 psrbaglefi kDyD|yfkFin
52 51 adantl φkDyD|yfkFin
53 22 46 ringcl RRingXxBaseRYkfxBaseRXxRYkfxBaseR
54 39 43 44 53 syl3anc φkDxyD|yfkXxRYkfxBaseR
55 22 46 ringcl RRingXxBaseRZkfxBaseRXxRZkfxBaseR
56 39 43 45 55 syl3anc φkDxyD|yfkXxRZkfxBaseR
57 eqidd φkDxyD|yfkXxRYkfx=xyD|yfkXxRYkfx
58 eqidd φkDxyD|yfkXxRZkfx=xyD|yfkXxRZkfx
59 52 54 56 57 58 offval2 φkDxyD|yfkXxRYkfx+RfxyD|yfkXxRZkfx=xyD|yfkXxRYkfx+RXxRZkfx
60 50 59 eqtr4d φkDxyD|yfkXxRY+˙Zkfx=xyD|yfkXxRYkfx+RfxyD|yfkXxRZkfx
61 60 oveq2d φkDRxyD|yfkXxRY+˙Zkfx=RxyD|yfkXxRYkfx+RfxyD|yfkXxRZkfx
62 3 adantr φkDRRing
63 ringcmn RRingRCMnd
64 62 63 syl φkDRCMnd
65 eqid xyD|yfkXxRYkfx=xyD|yfkXxRYkfx
66 eqid xyD|yfkXxRZkfx=xyD|yfkXxRZkfx
67 22 11 64 52 54 56 65 66 gsummptfidmadd2 φkDRxyD|yfkXxRYkfx+RfxyD|yfkXxRZkfx=RxyD|yfkXxRYkfx+RRxyD|yfkXxRZkfx
68 61 67 eqtrd φkDRxyD|yfkXxRY+˙Zkfx=RxyD|yfkXxRYkfx+RRxyD|yfkXxRZkfx
69 68 mpteq2dva φkDRxyD|yfkXxRY+˙Zkfx=kDRxyD|yfkXxRYkfx+RRxyD|yfkXxRZkfx
70 ringgrp RRingRGrp
71 3 70 syl φRGrp
72 1 6 10 71 8 9 psraddcl φY+˙ZB
73 1 6 46 5 4 7 72 psrmulfval φX×˙Y+˙Z=kDRxyD|yfkXxRY+˙Zkfx
74 1 6 5 3 7 8 psrmulcl φX×˙YB
75 1 6 5 3 7 9 psrmulcl φX×˙ZB
76 1 6 11 10 74 75 psradd φX×˙Y+˙X×˙Z=X×˙Y+RfX×˙Z
77 30 a1i φDV
78 ovexd φkDRxyD|yfkXxRYkfxV
79 ovexd φkDRxyD|yfkXxRZkfxV
80 1 6 46 5 4 7 8 psrmulfval φX×˙Y=kDRxyD|yfkXxRYkfx
81 1 6 46 5 4 7 9 psrmulfval φX×˙Z=kDRxyD|yfkXxRZkfx
82 77 78 79 80 81 offval2 φX×˙Y+RfX×˙Z=kDRxyD|yfkXxRYkfx+RRxyD|yfkXxRZkfx
83 76 82 eqtrd φX×˙Y+˙X×˙Z=kDRxyD|yfkXxRYkfx+RRxyD|yfkXxRZkfx
84 69 73 83 3eqtr4d φX×˙Y+˙Z=X×˙Y+˙X×˙Z