| Step |
Hyp |
Ref |
Expression |
| 1 |
|
haustop |
|
| 2 |
1
|
ssriv |
|
| 3 |
|
fss |
|
| 4 |
2 3
|
mpan2 |
|
| 5 |
|
pttop |
|
| 6 |
4 5
|
sylan2 |
|
| 7 |
|
simprl |
|
| 8 |
|
eqid |
|
| 9 |
8
|
ptuni |
|
| 10 |
4 9
|
sylan2 |
|
| 11 |
10
|
adantr |
|
| 12 |
7 11
|
eleqtrrd |
|
| 13 |
|
ixpfn |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
simprr |
|
| 16 |
15 11
|
eleqtrrd |
|
| 17 |
|
ixpfn |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
eqfnfv |
|
| 20 |
14 18 19
|
syl2anc |
|
| 21 |
20
|
necon3abid |
|
| 22 |
|
rexnal |
|
| 23 |
|
df-ne |
|
| 24 |
|
simpllr |
|
| 25 |
|
simprl |
|
| 26 |
24 25
|
ffvelcdmd |
|
| 27 |
|
vex |
|
| 28 |
27
|
elixp |
|
| 29 |
28
|
simprbi |
|
| 30 |
12 29
|
syl |
|
| 31 |
30
|
r19.21bi |
|
| 32 |
31
|
adantrr |
|
| 33 |
|
vex |
|
| 34 |
33
|
elixp |
|
| 35 |
34
|
simprbi |
|
| 36 |
16 35
|
syl |
|
| 37 |
36
|
r19.21bi |
|
| 38 |
37
|
adantrr |
|
| 39 |
|
simprr |
|
| 40 |
|
eqid |
|
| 41 |
40
|
hausnei |
|
| 42 |
26 32 38 39 41
|
syl13anc |
|
| 43 |
|
simp-4l |
|
| 44 |
4
|
ad4antlr |
|
| 45 |
25
|
adantr |
|
| 46 |
|
eqid |
|
| 47 |
46 8
|
ptpjcn |
|
| 48 |
43 44 45 47
|
syl3anc |
|
| 49 |
|
simprll |
|
| 50 |
|
eqid |
|
| 51 |
50
|
mptpreima |
|
| 52 |
|
cnima |
|
| 53 |
51 52
|
eqeltrrid |
|
| 54 |
48 49 53
|
syl2anc |
|
| 55 |
|
simprlr |
|
| 56 |
50
|
mptpreima |
|
| 57 |
|
cnima |
|
| 58 |
56 57
|
eqeltrrid |
|
| 59 |
48 55 58
|
syl2anc |
|
| 60 |
|
fveq1 |
|
| 61 |
60
|
eleq1d |
|
| 62 |
7
|
ad2antrr |
|
| 63 |
|
simprr1 |
|
| 64 |
61 62 63
|
elrabd |
|
| 65 |
|
fveq1 |
|
| 66 |
65
|
eleq1d |
|
| 67 |
15
|
ad2antrr |
|
| 68 |
|
simprr2 |
|
| 69 |
66 67 68
|
elrabd |
|
| 70 |
|
inrab |
|
| 71 |
|
simprr3 |
|
| 72 |
|
inelcm |
|
| 73 |
72
|
necon2bi |
|
| 74 |
71 73
|
syl |
|
| 75 |
74
|
ralrimivw |
|
| 76 |
|
rabeq0 |
|
| 77 |
75 76
|
sylibr |
|
| 78 |
70 77
|
eqtrid |
|
| 79 |
|
eleq2 |
|
| 80 |
|
ineq1 |
|
| 81 |
80
|
eqeq1d |
|
| 82 |
79 81
|
3anbi13d |
|
| 83 |
|
eleq2 |
|
| 84 |
|
ineq2 |
|
| 85 |
84
|
eqeq1d |
|
| 86 |
83 85
|
3anbi23d |
|
| 87 |
82 86
|
rspc2ev |
|
| 88 |
54 59 64 69 78 87
|
syl113anc |
|
| 89 |
88
|
expr |
|
| 90 |
89
|
rexlimdvva |
|
| 91 |
42 90
|
mpd |
|
| 92 |
91
|
expr |
|
| 93 |
23 92
|
biimtrrid |
|
| 94 |
93
|
rexlimdva |
|
| 95 |
22 94
|
biimtrrid |
|
| 96 |
21 95
|
sylbid |
|
| 97 |
96
|
ralrimivva |
|
| 98 |
46
|
ishaus |
|
| 99 |
6 97 98
|
sylanbrc |
|