Metamath Proof Explorer


Theorem pwsco1mhm

Description: Right composition with a function on the index sets yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pwsco1mhm.y Y=R𝑠A
pwsco1mhm.z Z=R𝑠B
pwsco1mhm.c C=BaseZ
pwsco1mhm.r φRMnd
pwsco1mhm.a φAV
pwsco1mhm.b φBW
pwsco1mhm.f φF:AB
Assertion pwsco1mhm φgCgFZMndHomY

Proof

Step Hyp Ref Expression
1 pwsco1mhm.y Y=R𝑠A
2 pwsco1mhm.z Z=R𝑠B
3 pwsco1mhm.c C=BaseZ
4 pwsco1mhm.r φRMnd
5 pwsco1mhm.a φAV
6 pwsco1mhm.b φBW
7 pwsco1mhm.f φF:AB
8 2 pwsmnd RMndBWZMnd
9 4 6 8 syl2anc φZMnd
10 1 pwsmnd RMndAVYMnd
11 4 5 10 syl2anc φYMnd
12 eqid BaseR=BaseR
13 2 12 3 pwselbasb RMndBWgCg:BBaseR
14 4 6 13 syl2anc φgCg:BBaseR
15 14 biimpa φgCg:BBaseR
16 7 adantr φgCF:AB
17 fco g:BBaseRF:ABgF:ABaseR
18 15 16 17 syl2anc φgCgF:ABaseR
19 eqid BaseY=BaseY
20 1 12 19 pwselbasb RMndAVgFBaseYgF:ABaseR
21 4 5 20 syl2anc φgFBaseYgF:ABaseR
22 21 adantr φgCgFBaseYgF:ABaseR
23 18 22 mpbird φgCgFBaseY
24 23 fmpttd φgCgF:CBaseY
25 5 adantr φxCyCAV
26 fvexd φxCyCzAxFzV
27 fvexd φxCyCzAyFzV
28 7 adantr φxCyCF:AB
29 28 ffvelcdmda φxCyCzAFzB
30 28 feqmptd φxCyCF=zAFz
31 4 adantr φxCyCRMnd
32 6 adantr φxCyCBW
33 simprl φxCyCxC
34 2 12 3 31 32 33 pwselbas φxCyCx:BBaseR
35 34 feqmptd φxCyCx=wBxw
36 fveq2 w=Fzxw=xFz
37 29 30 35 36 fmptco φxCyCxF=zAxFz
38 simprr φxCyCyC
39 2 12 3 31 32 38 pwselbas φxCyCy:BBaseR
40 39 feqmptd φxCyCy=wByw
41 fveq2 w=Fzyw=yFz
42 29 30 40 41 fmptco φxCyCyF=zAyFz
43 25 26 27 37 42 offval2 φxCyCxF+RfyF=zAxFz+RyFz
44 fco x:BBaseRF:ABxF:ABaseR
45 34 28 44 syl2anc φxCyCxF:ABaseR
46 1 12 19 pwselbasb RMndAVxFBaseYxF:ABaseR
47 31 25 46 syl2anc φxCyCxFBaseYxF:ABaseR
48 45 47 mpbird φxCyCxFBaseY
49 fco y:BBaseRF:AByF:ABaseR
50 39 28 49 syl2anc φxCyCyF:ABaseR
51 1 12 19 pwselbasb RMndAVyFBaseYyF:ABaseR
52 31 25 51 syl2anc φxCyCyFBaseYyF:ABaseR
53 50 52 mpbird φxCyCyFBaseY
54 eqid +R=+R
55 eqid +Y=+Y
56 1 19 31 25 48 53 54 55 pwsplusgval φxCyCxF+YyF=xF+RfyF
57 eqid +Z=+Z
58 2 3 31 32 33 38 54 57 pwsplusgval φxCyCx+Zy=x+Rfy
59 fvexd φxCyCwBxwV
60 fvexd φxCyCwBywV
61 32 59 60 35 40 offval2 φxCyCx+Rfy=wBxw+Ryw
62 58 61 eqtrd φxCyCx+Zy=wBxw+Ryw
63 36 41 oveq12d w=Fzxw+Ryw=xFz+RyFz
64 29 30 62 63 fmptco φxCyCx+ZyF=zAxFz+RyFz
65 43 56 64 3eqtr4rd φxCyCx+ZyF=xF+YyF
66 eqid gCgF=gCgF
67 coeq1 g=x+ZygF=x+ZyF
68 3 57 mndcl ZMndxCyCx+ZyC
69 68 3expb ZMndxCyCx+ZyC
70 9 69 sylan φxCyCx+ZyC
71 ovex x+ZyV
72 7 5 fexd φFV
73 72 adantr φxCyCFV
74 coexg x+ZyVFVx+ZyFV
75 71 73 74 sylancr φxCyCx+ZyFV
76 66 67 70 75 fvmptd3 φxCyCgCgFx+Zy=x+ZyF
77 coeq1 g=xgF=xF
78 coexg xCFVxFV
79 33 73 78 syl2anc φxCyCxFV
80 66 77 33 79 fvmptd3 φxCyCgCgFx=xF
81 coeq1 g=ygF=yF
82 coexg yCFVyFV
83 38 73 82 syl2anc φxCyCyFV
84 66 81 38 83 fvmptd3 φxCyCgCgFy=yF
85 80 84 oveq12d φxCyCgCgFx+YgCgFy=xF+YyF
86 65 76 85 3eqtr4d φxCyCgCgFx+Zy=gCgFx+YgCgFy
87 86 ralrimivva φxCyCgCgFx+Zy=gCgFx+YgCgFy
88 coeq1 g=0ZgF=0ZF
89 eqid 0Z=0Z
90 3 89 mndidcl ZMnd0ZC
91 9 90 syl φ0ZC
92 coexg 0ZCFV0ZFV
93 91 72 92 syl2anc φ0ZFV
94 66 88 91 93 fvmptd3 φgCgF0Z=0ZF
95 2 12 3 4 6 91 pwselbas φ0Z:BBaseR
96 fco 0Z:BBaseRF:AB0ZF:ABaseR
97 95 7 96 syl2anc φ0ZF:ABaseR
98 97 ffnd φ0ZFFnA
99 fvexd φ0RV
100 fnconstg 0RVA×0RFnA
101 99 100 syl φA×0RFnA
102 eqid 0R=0R
103 2 102 pws0g RMndBWB×0R=0Z
104 4 6 103 syl2anc φB×0R=0Z
105 104 fveq1d φB×0RFx=0ZFx
106 105 adantr φxAB×0RFx=0ZFx
107 fvex 0RV
108 7 ffvelcdmda φxAFxB
109 fvconst2g 0RVFxBB×0RFx=0R
110 107 108 109 sylancr φxAB×0RFx=0R
111 106 110 eqtr3d φxA0ZFx=0R
112 fvco3 F:ABxA0ZFx=0ZFx
113 7 112 sylan φxA0ZFx=0ZFx
114 fvconst2g 0RVxAA×0Rx=0R
115 99 114 sylan φxAA×0Rx=0R
116 111 113 115 3eqtr4d φxA0ZFx=A×0Rx
117 98 101 116 eqfnfvd φ0ZF=A×0R
118 1 102 pws0g RMndAVA×0R=0Y
119 4 5 118 syl2anc φA×0R=0Y
120 94 117 119 3eqtrd φgCgF0Z=0Y
121 24 87 120 3jca φgCgF:CBaseYxCyCgCgFx+Zy=gCgFx+YgCgFygCgF0Z=0Y
122 eqid 0Y=0Y
123 3 19 57 55 89 122 ismhm gCgFZMndHomYZMndYMndgCgF:CBaseYxCyCgCgFx+Zy=gCgFx+YgCgFygCgF0Z=0Y
124 9 11 121 123 syl21anbrc φgCgFZMndHomY