Metamath Proof Explorer


Theorem pythagtriplem14

Description: Lemma for pythagtrip . Calculate the square of N . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypothesis pythagtriplem13.1 N=C+BCB2
Assertion pythagtriplem14 ABCA2+B2=C2AgcdB=1¬2AN2=CA2

Proof

Step Hyp Ref Expression
1 pythagtriplem13.1 N=C+BCB2
2 1 oveq1i N2=C+BCB22
3 nncn CC
4 nncn BB
5 addcl CBC+B
6 3 4 5 syl2anr BCC+B
7 6 sqrtcld BCC+B
8 subcl CBCB
9 3 4 8 syl2anr BCCB
10 9 sqrtcld BCCB
11 7 10 subcld BCC+BCB
12 11 3adant1 ABCC+BCB
13 12 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+BCB
14 2cn 2
15 2ne0 20
16 sqdiv C+BCB220C+BCB22=C+BCB222
17 14 15 16 mp3an23 C+BCBC+BCB22=C+BCB222
18 13 17 syl ABCA2+B2=C2AgcdB=1¬2AC+BCB22=C+BCB222
19 14 sqvali 22=22
20 19 oveq2i C+BCB222=C+BCB222
21 13 sqcld ABCA2+B2=C2AgcdB=1¬2AC+BCB2
22 2cnne0 220
23 divdiv1 C+BCB2220220C+BCB222=C+BCB222
24 22 22 23 mp3an23 C+BCB2C+BCB222=C+BCB222
25 21 24 syl ABCA2+B2=C2AgcdB=1¬2AC+BCB222=C+BCB222
26 simp12 ABCA2+B2=C2AgcdB=1¬2AB
27 simp13 ABCA2+B2=C2AgcdB=1¬2AC
28 26 27 7 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+B
29 26 27 10 syl2anc ABCA2+B2=C2AgcdB=1¬2ACB
30 binom2sub C+BCBC+BCB2=C+B2-2C+BCB+CB2
31 28 29 30 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+BCB2=C+B2-2C+BCB+CB2
32 nnre CC
33 nnre BB
34 readdcl CBC+B
35 32 33 34 syl2anr BCC+B
36 35 3adant1 ABCC+B
37 36 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B
38 37 recnd ABCA2+B2=C2AgcdB=1¬2AC+B
39 resubcl CBCB
40 32 33 39 syl2anr BCCB
41 40 3adant1 ABCCB
42 41 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2ACB
43 42 recnd ABCA2+B2=C2AgcdB=1¬2ACB
44 7 3adant1 ABCC+B
45 10 3adant1 ABCCB
46 44 45 mulcld ABCC+BCB
47 mulcl 2C+BCB2C+BCB
48 14 46 47 sylancr ABC2C+BCB
49 48 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2A2C+BCB
50 38 43 49 addsubd ABCA2+B2=C2AgcdB=1¬2AC+B+CB-2C+BCB=C+B-2C+BCB+C-B
51 27 nncnd ABCA2+B2=C2AgcdB=1¬2AC
52 simp11 ABCA2+B2=C2AgcdB=1¬2AA
53 52 nncnd ABCA2+B2=C2AgcdB=1¬2AA
54 subdi 2CA2CA=2C2A
55 14 51 53 54 mp3an2i ABCA2+B2=C2AgcdB=1¬2A2CA=2C2A
56 ppncan CBCC+B+CB=C+C
57 56 3anidm13 CBC+B+CB=C+C
58 2times C2C=C+C
59 58 adantr CB2C=C+C
60 57 59 eqtr4d CBC+B+CB=2C
61 3 4 60 syl2anr BCC+B+CB=2C
62 61 3adant1 ABCC+B+CB=2C
63 62 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B+CB=2C
64 26 nncnd ABCA2+B2=C2AgcdB=1¬2AB
65 subsq CBC2B2=C+BCB
66 51 64 65 syl2anc ABCA2+B2=C2AgcdB=1¬2AC2B2=C+BCB
67 oveq1 A2+B2=C2A2+B2-B2=C2B2
68 67 3ad2ant2 ABCA2+B2=C2AgcdB=1¬2AA2+B2-B2=C2B2
69 nncn AA
70 69 sqcld AA2
71 70 3ad2ant1 ABCA2
72 4 sqcld BB2
73 72 3ad2ant2 ABCB2
74 71 73 pncand ABCA2+B2-B2=A2
75 74 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA2+B2-B2=A2
76 68 75 eqtr3d ABCA2+B2=C2AgcdB=1¬2AC2B2=A2
77 66 76 eqtr3d ABCA2+B2=C2AgcdB=1¬2AC+BCB=A2
78 77 fveq2d ABCA2+B2=C2AgcdB=1¬2AC+BCB=A2
79 32 adantl BCC
80 33 adantr BCB
81 nngt0 C0<C
82 81 adantl BC0<C
83 nngt0 B0<B
84 83 adantr BC0<B
85 79 80 82 84 addgt0d BC0<C+B
86 0re 0
87 ltle 0C+B0<C+B0C+B
88 86 87 mpan C+B0<C+B0C+B
89 35 85 88 sylc BC0C+B
90 89 3adant1 ABC0C+B
91 90 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2A0C+B
92 pythagtriplem10 ABCA2+B2=C20<CB
93 92 3adant3 ABCA2+B2=C2AgcdB=1¬2A0<CB
94 ltle 0CB0<CB0CB
95 86 94 mpan CB0<CB0CB
96 42 93 95 sylc ABCA2+B2=C2AgcdB=1¬2A0CB
97 37 91 42 96 sqrtmuld ABCA2+B2=C2AgcdB=1¬2AC+BCB=C+BCB
98 78 97 eqtr3d ABCA2+B2=C2AgcdB=1¬2AA2=C+BCB
99 nnre AA
100 99 3ad2ant1 ABCA
101 100 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA
102 nnnn0 AA0
103 102 nn0ge0d A0A
104 103 3ad2ant1 ABC0A
105 104 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2A0A
106 101 105 sqrtsqd ABCA2+B2=C2AgcdB=1¬2AA2=A
107 98 106 eqtr3d ABCA2+B2=C2AgcdB=1¬2AC+BCB=A
108 107 oveq2d ABCA2+B2=C2AgcdB=1¬2A2C+BCB=2A
109 63 108 oveq12d ABCA2+B2=C2AgcdB=1¬2AC+B+CB-2C+BCB=2C2A
110 55 109 eqtr4d ABCA2+B2=C2AgcdB=1¬2A2CA=C+B+CB-2C+BCB
111 resqrtth C+B0C+BC+B2=C+B
112 37 91 111 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+B2=C+B
113 112 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+B22C+BCB=C+B-2C+BCB
114 resqrtth CB0CBCB2=CB
115 42 96 114 syl2anc ABCA2+B2=C2AgcdB=1¬2ACB2=CB
116 113 115 oveq12d ABCA2+B2=C2AgcdB=1¬2AC+B2-2C+BCB+CB2=C+B-2C+BCB+C-B
117 50 110 116 3eqtr4rd ABCA2+B2=C2AgcdB=1¬2AC+B2-2C+BCB+CB2=2CA
118 31 117 eqtrd ABCA2+B2=C2AgcdB=1¬2AC+BCB2=2CA
119 118 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+BCB22=2CA2
120 subcl CACA
121 3 69 120 syl2anr ACCA
122 121 3adant2 ABCCA
123 122 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2ACA
124 divcan3 CA2202CA2=CA
125 14 15 124 mp3an23 CA2CA2=CA
126 123 125 syl ABCA2+B2=C2AgcdB=1¬2A2CA2=CA
127 119 126 eqtrd ABCA2+B2=C2AgcdB=1¬2AC+BCB22=CA
128 127 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+BCB222=CA2
129 25 128 eqtr3d ABCA2+B2=C2AgcdB=1¬2AC+BCB222=CA2
130 20 129 eqtrid ABCA2+B2=C2AgcdB=1¬2AC+BCB222=CA2
131 18 130 eqtrd ABCA2+B2=C2AgcdB=1¬2AC+BCB22=CA2
132 2 131 eqtrid ABCA2+B2=C2AgcdB=1¬2AN2=CA2