| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagtriplem13.1 |
|
| 2 |
1
|
oveq1i |
|
| 3 |
|
nncn |
|
| 4 |
|
nncn |
|
| 5 |
|
addcl |
|
| 6 |
3 4 5
|
syl2anr |
|
| 7 |
6
|
sqrtcld |
|
| 8 |
|
subcl |
|
| 9 |
3 4 8
|
syl2anr |
|
| 10 |
9
|
sqrtcld |
|
| 11 |
7 10
|
subcld |
|
| 12 |
11
|
3adant1 |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
|
2cn |
|
| 15 |
|
2ne0 |
|
| 16 |
|
sqdiv |
|
| 17 |
14 15 16
|
mp3an23 |
|
| 18 |
13 17
|
syl |
|
| 19 |
14
|
sqvali |
|
| 20 |
19
|
oveq2i |
|
| 21 |
13
|
sqcld |
|
| 22 |
|
2cnne0 |
|
| 23 |
|
divdiv1 |
|
| 24 |
22 22 23
|
mp3an23 |
|
| 25 |
21 24
|
syl |
|
| 26 |
|
simp12 |
|
| 27 |
|
simp13 |
|
| 28 |
26 27 7
|
syl2anc |
|
| 29 |
26 27 10
|
syl2anc |
|
| 30 |
|
binom2sub |
|
| 31 |
28 29 30
|
syl2anc |
|
| 32 |
|
nnre |
|
| 33 |
|
nnre |
|
| 34 |
|
readdcl |
|
| 35 |
32 33 34
|
syl2anr |
|
| 36 |
35
|
3adant1 |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
37
|
recnd |
|
| 39 |
|
resubcl |
|
| 40 |
32 33 39
|
syl2anr |
|
| 41 |
40
|
3adant1 |
|
| 42 |
41
|
3ad2ant1 |
|
| 43 |
42
|
recnd |
|
| 44 |
7
|
3adant1 |
|
| 45 |
10
|
3adant1 |
|
| 46 |
44 45
|
mulcld |
|
| 47 |
|
mulcl |
|
| 48 |
14 46 47
|
sylancr |
|
| 49 |
48
|
3ad2ant1 |
|
| 50 |
38 43 49
|
addsubd |
|
| 51 |
27
|
nncnd |
|
| 52 |
|
simp11 |
|
| 53 |
52
|
nncnd |
|
| 54 |
|
subdi |
|
| 55 |
14 51 53 54
|
mp3an2i |
|
| 56 |
|
ppncan |
|
| 57 |
56
|
3anidm13 |
|
| 58 |
|
2times |
|
| 59 |
58
|
adantr |
|
| 60 |
57 59
|
eqtr4d |
|
| 61 |
3 4 60
|
syl2anr |
|
| 62 |
61
|
3adant1 |
|
| 63 |
62
|
3ad2ant1 |
|
| 64 |
26
|
nncnd |
|
| 65 |
|
subsq |
|
| 66 |
51 64 65
|
syl2anc |
|
| 67 |
|
oveq1 |
|
| 68 |
67
|
3ad2ant2 |
|
| 69 |
|
nncn |
|
| 70 |
69
|
sqcld |
|
| 71 |
70
|
3ad2ant1 |
|
| 72 |
4
|
sqcld |
|
| 73 |
72
|
3ad2ant2 |
|
| 74 |
71 73
|
pncand |
|
| 75 |
74
|
3ad2ant1 |
|
| 76 |
68 75
|
eqtr3d |
|
| 77 |
66 76
|
eqtr3d |
|
| 78 |
77
|
fveq2d |
|
| 79 |
32
|
adantl |
|
| 80 |
33
|
adantr |
|
| 81 |
|
nngt0 |
|
| 82 |
81
|
adantl |
|
| 83 |
|
nngt0 |
|
| 84 |
83
|
adantr |
|
| 85 |
79 80 82 84
|
addgt0d |
|
| 86 |
|
0re |
|
| 87 |
|
ltle |
|
| 88 |
86 87
|
mpan |
|
| 89 |
35 85 88
|
sylc |
|
| 90 |
89
|
3adant1 |
|
| 91 |
90
|
3ad2ant1 |
|
| 92 |
|
pythagtriplem10 |
|
| 93 |
92
|
3adant3 |
|
| 94 |
|
ltle |
|
| 95 |
86 94
|
mpan |
|
| 96 |
42 93 95
|
sylc |
|
| 97 |
37 91 42 96
|
sqrtmuld |
|
| 98 |
78 97
|
eqtr3d |
|
| 99 |
|
nnre |
|
| 100 |
99
|
3ad2ant1 |
|
| 101 |
100
|
3ad2ant1 |
|
| 102 |
|
nnnn0 |
|
| 103 |
102
|
nn0ge0d |
|
| 104 |
103
|
3ad2ant1 |
|
| 105 |
104
|
3ad2ant1 |
|
| 106 |
101 105
|
sqrtsqd |
|
| 107 |
98 106
|
eqtr3d |
|
| 108 |
107
|
oveq2d |
|
| 109 |
63 108
|
oveq12d |
|
| 110 |
55 109
|
eqtr4d |
|
| 111 |
|
resqrtth |
|
| 112 |
37 91 111
|
syl2anc |
|
| 113 |
112
|
oveq1d |
|
| 114 |
|
resqrtth |
|
| 115 |
42 96 114
|
syl2anc |
|
| 116 |
113 115
|
oveq12d |
|
| 117 |
50 110 116
|
3eqtr4rd |
|
| 118 |
31 117
|
eqtrd |
|
| 119 |
118
|
oveq1d |
|
| 120 |
|
subcl |
|
| 121 |
3 69 120
|
syl2anr |
|
| 122 |
121
|
3adant2 |
|
| 123 |
122
|
3ad2ant1 |
|
| 124 |
|
divcan3 |
|
| 125 |
14 15 124
|
mp3an23 |
|
| 126 |
123 125
|
syl |
|
| 127 |
119 126
|
eqtrd |
|
| 128 |
127
|
oveq1d |
|
| 129 |
25 128
|
eqtr3d |
|
| 130 |
20 129
|
eqtrid |
|
| 131 |
18 130
|
eqtrd |
|
| 132 |
2 131
|
eqtrid |
|