Metamath Proof Explorer


Theorem qqhval2

Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B=BaseR
qqhval2.1 ×˙=/rR
qqhval2.2 L=ℤRHomR
Assertion qqhval2 RDivRingchrR=0ℚHomR=qLnumerq×˙Ldenomq

Proof

Step Hyp Ref Expression
1 qqhval2.0 B=BaseR
2 qqhval2.1 ×˙=/rR
3 qqhval2.2 L=ℤRHomR
4 elex RDivRingRV
5 4 adantr RDivRingchrR=0RV
6 eqid 1R=1R
7 2 6 3 qqhval RVℚHomR=ranx,yL-1UnitRxyLx×˙Ly
8 5 7 syl RDivRingchrR=0ℚHomR=ranx,yL-1UnitRxyLx×˙Ly
9 eqid =
10 eqid 0R=0R
11 1 3 10 zrhunitpreima RDivRingchrR=0L-1UnitR=0
12 mpoeq12 =L-1UnitR=0x,yL-1UnitRxyLx×˙Ly=x,y0xyLx×˙Ly
13 9 11 12 sylancr RDivRingchrR=0x,yL-1UnitRxyLx×˙Ly=x,y0xyLx×˙Ly
14 13 rneqd RDivRingchrR=0ranx,yL-1UnitRxyLx×˙Ly=ranx,y0xyLx×˙Ly
15 nfv eRDivRingchrR=0
16 nfab1 _ee|xy0e=xyLx×˙Ly
17 nfcv _eqs|qs=Lnumerq×˙Ldenomq
18 simpr RDivRingchrR=0xy0e=xyLx×˙Lye=xyLx×˙Ly
19 zssq
20 simplrl RDivRingchrR=0xy0e=xyLx×˙Lyx
21 19 20 sselid RDivRingchrR=0xy0e=xyLx×˙Lyx
22 simplrr RDivRingchrR=0xy0e=xyLx×˙Lyy0
23 22 eldifad RDivRingchrR=0xy0e=xyLx×˙Lyy
24 19 23 sselid RDivRingchrR=0xy0e=xyLx×˙Lyy
25 22 eldifbd RDivRingchrR=0xy0e=xyLx×˙Ly¬y0
26 velsn y0y=0
27 26 necon3bbii ¬y0y0
28 25 27 sylib RDivRingchrR=0xy0e=xyLx×˙Lyy0
29 qdivcl xyy0xy
30 21 24 28 29 syl3anc RDivRingchrR=0xy0e=xyLx×˙Lyxy
31 simplll RDivRingchrR=0xy0e=xyLx×˙LyRDivRing
32 simpllr RDivRingchrR=0xy0e=xyLx×˙LychrR=0
33 1 2 3 qqhval2lem RDivRingchrR=0xyy0Lnumerxy×˙Ldenomxy=Lx×˙Ly
34 33 eqcomd RDivRingchrR=0xyy0Lx×˙Ly=Lnumerxy×˙Ldenomxy
35 31 32 20 23 28 34 syl23anc RDivRingchrR=0xy0e=xyLx×˙LyLx×˙Ly=Lnumerxy×˙Ldenomxy
36 ovex xyV
37 ovex Lx×˙LyV
38 opeq12 q=xys=Lx×˙Lyqs=xyLx×˙Ly
39 38 eqeq2d q=xys=Lx×˙Lye=qse=xyLx×˙Ly
40 simpl q=xys=Lx×˙Lyq=xy
41 40 eleq1d q=xys=Lx×˙Lyqxy
42 simpr q=xys=Lx×˙Lys=Lx×˙Ly
43 40 fveq2d q=xys=Lx×˙Lynumerq=numerxy
44 43 fveq2d q=xys=Lx×˙LyLnumerq=Lnumerxy
45 40 fveq2d q=xys=Lx×˙Lydenomq=denomxy
46 45 fveq2d q=xys=Lx×˙LyLdenomq=Ldenomxy
47 44 46 oveq12d q=xys=Lx×˙LyLnumerq×˙Ldenomq=Lnumerxy×˙Ldenomxy
48 42 47 eqeq12d q=xys=Lx×˙Lys=Lnumerq×˙LdenomqLx×˙Ly=Lnumerxy×˙Ldenomxy
49 41 48 anbi12d q=xys=Lx×˙Lyqs=Lnumerq×˙LdenomqxyLx×˙Ly=Lnumerxy×˙Ldenomxy
50 39 49 anbi12d q=xys=Lx×˙Lye=qsqs=Lnumerq×˙Ldenomqe=xyLx×˙LyxyLx×˙Ly=Lnumerxy×˙Ldenomxy
51 36 37 50 spc2ev e=xyLx×˙LyxyLx×˙Ly=Lnumerxy×˙Ldenomxyqse=qsqs=Lnumerq×˙Ldenomq
52 18 30 35 51 syl12anc RDivRingchrR=0xy0e=xyLx×˙Lyqse=qsqs=Lnumerq×˙Ldenomq
53 52 ex RDivRingchrR=0xy0e=xyLx×˙Lyqse=qsqs=Lnumerq×˙Ldenomq
54 53 rexlimdvva RDivRingchrR=0xy0e=xyLx×˙Lyqse=qsqs=Lnumerq×˙Ldenomq
55 54 imp RDivRingchrR=0xy0e=xyLx×˙Lyqse=qsqs=Lnumerq×˙Ldenomq
56 19.42vv qsRDivRingchrR=0e=qsqs=Lnumerq×˙LdenomqRDivRingchrR=0qse=qsqs=Lnumerq×˙Ldenomq
57 simprrl RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqq
58 qnumcl qnumerq
59 57 58 syl RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqnumerq
60 qdencl qdenomq
61 57 60 syl RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqdenomq
62 61 nnzd RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqdenomq
63 nnne0 denomqdenomq0
64 nelsn denomq0¬denomq0
65 61 63 64 3syl RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomq¬denomq0
66 62 65 eldifd RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqdenomq0
67 simprl RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqe=qs
68 qeqnumdivden qq=numerqdenomq
69 57 68 syl RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqq=numerqdenomq
70 simprrr RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqs=Lnumerq×˙Ldenomq
71 69 70 opeq12d RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqqs=numerqdenomqLnumerq×˙Ldenomq
72 67 71 eqtrd RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqe=numerqdenomqLnumerq×˙Ldenomq
73 oveq1 x=numerqxy=numerqy
74 fveq2 x=numerqLx=Lnumerq
75 74 oveq1d x=numerqLx×˙Ly=Lnumerq×˙Ly
76 73 75 opeq12d x=numerqxyLx×˙Ly=numerqyLnumerq×˙Ly
77 76 eqeq2d x=numerqe=xyLx×˙Lye=numerqyLnumerq×˙Ly
78 oveq2 y=denomqnumerqy=numerqdenomq
79 fveq2 y=denomqLy=Ldenomq
80 79 oveq2d y=denomqLnumerq×˙Ly=Lnumerq×˙Ldenomq
81 78 80 opeq12d y=denomqnumerqyLnumerq×˙Ly=numerqdenomqLnumerq×˙Ldenomq
82 81 eqeq2d y=denomqe=numerqyLnumerq×˙Lye=numerqdenomqLnumerq×˙Ldenomq
83 77 82 rspc2ev numerqdenomq0e=numerqdenomqLnumerq×˙Ldenomqxy0e=xyLx×˙Ly
84 59 66 72 83 syl3anc RDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqxy0e=xyLx×˙Ly
85 84 exlimivv qsRDivRingchrR=0e=qsqs=Lnumerq×˙Ldenomqxy0e=xyLx×˙Ly
86 56 85 sylbir RDivRingchrR=0qse=qsqs=Lnumerq×˙Ldenomqxy0e=xyLx×˙Ly
87 55 86 impbida RDivRingchrR=0xy0e=xyLx×˙Lyqse=qsqs=Lnumerq×˙Ldenomq
88 abid ee|xy0e=xyLx×˙Lyxy0e=xyLx×˙Ly
89 elopab eqs|qs=Lnumerq×˙Ldenomqqse=qsqs=Lnumerq×˙Ldenomq
90 87 88 89 3bitr4g RDivRingchrR=0ee|xy0e=xyLx×˙Lyeqs|qs=Lnumerq×˙Ldenomq
91 15 16 17 90 eqrd RDivRingchrR=0e|xy0e=xyLx×˙Ly=qs|qs=Lnumerq×˙Ldenomq
92 eqid x,y0xyLx×˙Ly=x,y0xyLx×˙Ly
93 92 rnmpo ranx,y0xyLx×˙Ly=e|xy0e=xyLx×˙Ly
94 df-mpt qLnumerq×˙Ldenomq=qs|qs=Lnumerq×˙Ldenomq
95 91 93 94 3eqtr4g RDivRingchrR=0ranx,y0xyLx×˙Ly=qLnumerq×˙Ldenomq
96 8 14 95 3eqtrd RDivRingchrR=0ℚHomR=qLnumerq×˙Ldenomq