| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtoprest.2 |  | 
						
							| 2 |  | qtoprest.3 |  | 
						
							| 3 |  | qtoprest.4 |  | 
						
							| 4 |  | qtoprest.5 |  | 
						
							| 5 |  | qtoprest.6 |  | 
						
							| 6 |  | fofn |  | 
						
							| 7 | 2 6 | syl |  | 
						
							| 8 |  | qtopid |  | 
						
							| 9 | 1 7 8 | syl2anc |  | 
						
							| 10 |  | cnvimass |  | 
						
							| 11 | 7 | fndmd |  | 
						
							| 12 | 10 11 | sseqtrid |  | 
						
							| 13 | 4 12 | eqsstrd |  | 
						
							| 14 |  | toponuni |  | 
						
							| 15 | 1 14 | syl |  | 
						
							| 16 | 13 15 | sseqtrd |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | cnrest |  | 
						
							| 19 | 9 16 18 | syl2anc |  | 
						
							| 20 |  | qtoptopon |  | 
						
							| 21 | 1 2 20 | syl2anc |  | 
						
							| 22 |  | df-ima |  | 
						
							| 23 | 4 | imaeq2d |  | 
						
							| 24 |  | foimacnv |  | 
						
							| 25 | 2 3 24 | syl2anc |  | 
						
							| 26 | 23 25 | eqtrd |  | 
						
							| 27 | 22 26 | eqtr3id |  | 
						
							| 28 |  | eqimss |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 |  | cnrest2 |  | 
						
							| 31 | 21 29 3 30 | syl3anc |  | 
						
							| 32 | 19 31 | mpbid |  | 
						
							| 33 |  | resttopon |  | 
						
							| 34 | 21 3 33 | syl2anc |  | 
						
							| 35 |  | qtopss |  | 
						
							| 36 | 32 34 27 35 | syl3anc |  | 
						
							| 37 |  | resttopon |  | 
						
							| 38 | 1 13 37 | syl2anc |  | 
						
							| 39 |  | fnfun |  | 
						
							| 40 | 7 39 | syl |  | 
						
							| 41 | 13 11 | sseqtrrd |  | 
						
							| 42 |  | fores |  | 
						
							| 43 | 40 41 42 | syl2anc |  | 
						
							| 44 |  | foeq3 |  | 
						
							| 45 | 26 44 | syl |  | 
						
							| 46 | 43 45 | mpbid |  | 
						
							| 47 |  | elqtop3 |  | 
						
							| 48 | 38 46 47 | syl2anc |  | 
						
							| 49 |  | cnvresima |  | 
						
							| 50 |  | imass2 |  | 
						
							| 51 | 50 | adantl |  | 
						
							| 52 | 4 | adantr |  | 
						
							| 53 | 51 52 | sseqtrrd |  | 
						
							| 54 |  | dfss2 |  | 
						
							| 55 | 53 54 | sylib |  | 
						
							| 56 | 49 55 | eqtrid |  | 
						
							| 57 | 56 | eleq1d |  | 
						
							| 58 |  | simplrl |  | 
						
							| 59 |  | dfss2 |  | 
						
							| 60 | 58 59 | sylib |  | 
						
							| 61 |  | topontop |  | 
						
							| 62 | 21 61 | syl |  | 
						
							| 63 | 62 | ad2antrr |  | 
						
							| 64 |  | toponmax |  | 
						
							| 65 | 1 64 | syl |  | 
						
							| 66 |  | focdmex |  | 
						
							| 67 | 65 2 66 | sylc |  | 
						
							| 68 | 67 3 | ssexd |  | 
						
							| 69 | 68 | ad2antrr |  | 
						
							| 70 | 3 | ad2antrr |  | 
						
							| 71 | 58 70 | sstrd |  | 
						
							| 72 |  | topontop |  | 
						
							| 73 | 1 72 | syl |  | 
						
							| 74 |  | restopn2 |  | 
						
							| 75 | 73 74 | sylan |  | 
						
							| 76 | 75 | simprbda |  | 
						
							| 77 | 76 | adantrl |  | 
						
							| 78 | 77 | an32s |  | 
						
							| 79 |  | elqtop3 |  | 
						
							| 80 | 1 2 79 | syl2anc |  | 
						
							| 81 | 80 | ad2antrr |  | 
						
							| 82 | 71 78 81 | mpbir2and |  | 
						
							| 83 |  | elrestr |  | 
						
							| 84 | 63 69 82 83 | syl3anc |  | 
						
							| 85 | 60 84 | eqeltrrd |  | 
						
							| 86 | 34 | ad2antrr |  | 
						
							| 87 |  | toponuni |  | 
						
							| 88 | 86 87 | syl |  | 
						
							| 89 | 88 | difeq1d |  | 
						
							| 90 | 3 | ad2antrr |  | 
						
							| 91 | 21 | ad2antrr |  | 
						
							| 92 |  | toponuni |  | 
						
							| 93 | 91 92 | syl |  | 
						
							| 94 | 90 93 | sseqtrd |  | 
						
							| 95 | 90 | ssdifssd |  | 
						
							| 96 | 40 | ad2antrr |  | 
						
							| 97 |  | funcnvcnv |  | 
						
							| 98 |  | imadif |  | 
						
							| 99 | 96 97 98 | 3syl |  | 
						
							| 100 | 4 | ad2antrr |  | 
						
							| 101 | 100 | difeq1d |  | 
						
							| 102 | 99 101 | eqtr4d |  | 
						
							| 103 |  | simpr |  | 
						
							| 104 | 38 | ad2antrr |  | 
						
							| 105 |  | toponuni |  | 
						
							| 106 | 104 105 | syl |  | 
						
							| 107 | 106 | difeq1d |  | 
						
							| 108 |  | topontop |  | 
						
							| 109 | 104 108 | syl |  | 
						
							| 110 |  | simplrr |  | 
						
							| 111 |  | eqid |  | 
						
							| 112 | 111 | opncld |  | 
						
							| 113 | 109 110 112 | syl2anc |  | 
						
							| 114 | 107 113 | eqeltrd |  | 
						
							| 115 |  | restcldr |  | 
						
							| 116 | 103 114 115 | syl2anc |  | 
						
							| 117 | 102 116 | eqeltrd |  | 
						
							| 118 |  | qtopcld |  | 
						
							| 119 | 1 2 118 | syl2anc |  | 
						
							| 120 | 119 | ad2antrr |  | 
						
							| 121 | 95 117 120 | mpbir2and |  | 
						
							| 122 |  | difssd |  | 
						
							| 123 |  | eqid |  | 
						
							| 124 | 123 | restcldi |  | 
						
							| 125 | 94 121 122 124 | syl3anc |  | 
						
							| 126 | 89 125 | eqeltrrd |  | 
						
							| 127 |  | topontop |  | 
						
							| 128 | 86 127 | syl |  | 
						
							| 129 |  | simplrl |  | 
						
							| 130 | 129 88 | sseqtrd |  | 
						
							| 131 |  | eqid |  | 
						
							| 132 | 131 | isopn2 |  | 
						
							| 133 | 128 130 132 | syl2anc |  | 
						
							| 134 | 126 133 | mpbird |  | 
						
							| 135 | 5 | adantr |  | 
						
							| 136 | 85 134 135 | mpjaodan |  | 
						
							| 137 | 136 | expr |  | 
						
							| 138 | 57 137 | sylbid |  | 
						
							| 139 | 138 | expimpd |  | 
						
							| 140 | 48 139 | sylbid |  | 
						
							| 141 | 140 | ssrdv |  | 
						
							| 142 | 36 141 | eqssd |  |