Metamath Proof Explorer


Theorem qtoprest

Description: If A is a saturated open or closed set (where saturated means that A = (`' F " U ) for some U ), then the restriction of the quotient map F to A ` is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses qtoprest.2 φ J TopOn X
qtoprest.3 φ F : X onto Y
qtoprest.4 φ U Y
qtoprest.5 φ A = F -1 U
qtoprest.6 φ A J A Clsd J
Assertion qtoprest φ J qTop F 𝑡 U = J 𝑡 A qTop F A

Proof

Step Hyp Ref Expression
1 qtoprest.2 φ J TopOn X
2 qtoprest.3 φ F : X onto Y
3 qtoprest.4 φ U Y
4 qtoprest.5 φ A = F -1 U
5 qtoprest.6 φ A J A Clsd J
6 fofn F : X onto Y F Fn X
7 2 6 syl φ F Fn X
8 qtopid J TopOn X F Fn X F J Cn J qTop F
9 1 7 8 syl2anc φ F J Cn J qTop F
10 cnvimass F -1 U dom F
11 fndm F Fn X dom F = X
12 7 11 syl φ dom F = X
13 10 12 sseqtrid φ F -1 U X
14 4 13 eqsstrd φ A X
15 toponuni J TopOn X X = J
16 1 15 syl φ X = J
17 14 16 sseqtrd φ A J
18 eqid J = J
19 18 cnrest F J Cn J qTop F A J F A J 𝑡 A Cn J qTop F
20 9 17 19 syl2anc φ F A J 𝑡 A Cn J qTop F
21 qtoptopon J TopOn X F : X onto Y J qTop F TopOn Y
22 1 2 21 syl2anc φ J qTop F TopOn Y
23 df-ima F A = ran F A
24 4 imaeq2d φ F A = F F -1 U
25 foimacnv F : X onto Y U Y F F -1 U = U
26 2 3 25 syl2anc φ F F -1 U = U
27 24 26 eqtrd φ F A = U
28 23 27 syl5eqr φ ran F A = U
29 eqimss ran F A = U ran F A U
30 28 29 syl φ ran F A U
31 cnrest2 J qTop F TopOn Y ran F A U U Y F A J 𝑡 A Cn J qTop F F A J 𝑡 A Cn J qTop F 𝑡 U
32 22 30 3 31 syl3anc φ F A J 𝑡 A Cn J qTop F F A J 𝑡 A Cn J qTop F 𝑡 U
33 20 32 mpbid φ F A J 𝑡 A Cn J qTop F 𝑡 U
34 resttopon J qTop F TopOn Y U Y J qTop F 𝑡 U TopOn U
35 22 3 34 syl2anc φ J qTop F 𝑡 U TopOn U
36 qtopss F A J 𝑡 A Cn J qTop F 𝑡 U J qTop F 𝑡 U TopOn U ran F A = U J qTop F 𝑡 U J 𝑡 A qTop F A
37 33 35 28 36 syl3anc φ J qTop F 𝑡 U J 𝑡 A qTop F A
38 resttopon J TopOn X A X J 𝑡 A TopOn A
39 1 14 38 syl2anc φ J 𝑡 A TopOn A
40 fnfun F Fn X Fun F
41 7 40 syl φ Fun F
42 14 12 sseqtrrd φ A dom F
43 fores Fun F A dom F F A : A onto F A
44 41 42 43 syl2anc φ F A : A onto F A
45 foeq3 F A = U F A : A onto F A F A : A onto U
46 27 45 syl φ F A : A onto F A F A : A onto U
47 44 46 mpbid φ F A : A onto U
48 elqtop3 J 𝑡 A TopOn A F A : A onto U x J 𝑡 A qTop F A x U F A -1 x J 𝑡 A
49 39 47 48 syl2anc φ x J 𝑡 A qTop F A x U F A -1 x J 𝑡 A
50 cnvresima F A -1 x = F -1 x A
51 imass2 x U F -1 x F -1 U
52 51 adantl φ x U F -1 x F -1 U
53 4 adantr φ x U A = F -1 U
54 52 53 sseqtrrd φ x U F -1 x A
55 df-ss F -1 x A F -1 x A = F -1 x
56 54 55 sylib φ x U F -1 x A = F -1 x
57 50 56 syl5eq φ x U F A -1 x = F -1 x
58 57 eleq1d φ x U F A -1 x J 𝑡 A F -1 x J 𝑡 A
59 simplrl φ x U F -1 x J 𝑡 A A J x U
60 df-ss x U x U = x
61 59 60 sylib φ x U F -1 x J 𝑡 A A J x U = x
62 topontop J qTop F TopOn Y J qTop F Top
63 22 62 syl φ J qTop F Top
64 63 ad2antrr φ x U F -1 x J 𝑡 A A J J qTop F Top
65 toponmax J TopOn X X J
66 1 65 syl φ X J
67 fornex X J F : X onto Y Y V
68 66 2 67 sylc φ Y V
69 68 3 ssexd φ U V
70 69 ad2antrr φ x U F -1 x J 𝑡 A A J U V
71 3 ad2antrr φ x U F -1 x J 𝑡 A A J U Y
72 59 71 sstrd φ x U F -1 x J 𝑡 A A J x Y
73 topontop J TopOn X J Top
74 1 73 syl φ J Top
75 restopn2 J Top A J F -1 x J 𝑡 A F -1 x J F -1 x A
76 74 75 sylan φ A J F -1 x J 𝑡 A F -1 x J F -1 x A
77 76 simprbda φ A J F -1 x J 𝑡 A F -1 x J
78 77 adantrl φ A J x U F -1 x J 𝑡 A F -1 x J
79 78 an32s φ x U F -1 x J 𝑡 A A J F -1 x J
80 elqtop3 J TopOn X F : X onto Y x J qTop F x Y F -1 x J
81 1 2 80 syl2anc φ x J qTop F x Y F -1 x J
82 81 ad2antrr φ x U F -1 x J 𝑡 A A J x J qTop F x Y F -1 x J
83 72 79 82 mpbir2and φ x U F -1 x J 𝑡 A A J x J qTop F
84 elrestr J qTop F Top U V x J qTop F x U J qTop F 𝑡 U
85 64 70 83 84 syl3anc φ x U F -1 x J 𝑡 A A J x U J qTop F 𝑡 U
86 61 85 eqeltrrd φ x U F -1 x J 𝑡 A A J x J qTop F 𝑡 U
87 35 ad2antrr φ x U F -1 x J 𝑡 A A Clsd J J qTop F 𝑡 U TopOn U
88 toponuni J qTop F 𝑡 U TopOn U U = J qTop F 𝑡 U
89 87 88 syl φ x U F -1 x J 𝑡 A A Clsd J U = J qTop F 𝑡 U
90 89 difeq1d φ x U F -1 x J 𝑡 A A Clsd J U x = J qTop F 𝑡 U x
91 3 ad2antrr φ x U F -1 x J 𝑡 A A Clsd J U Y
92 22 ad2antrr φ x U F -1 x J 𝑡 A A Clsd J J qTop F TopOn Y
93 toponuni J qTop F TopOn Y Y = J qTop F
94 92 93 syl φ x U F -1 x J 𝑡 A A Clsd J Y = J qTop F
95 91 94 sseqtrd φ x U F -1 x J 𝑡 A A Clsd J U J qTop F
96 91 ssdifssd φ x U F -1 x J 𝑡 A A Clsd J U x Y
97 41 ad2antrr φ x U F -1 x J 𝑡 A A Clsd J Fun F
98 funcnvcnv Fun F Fun F -1 -1
99 imadif Fun F -1 -1 F -1 U x = F -1 U F -1 x
100 97 98 99 3syl φ x U F -1 x J 𝑡 A A Clsd J F -1 U x = F -1 U F -1 x
101 4 ad2antrr φ x U F -1 x J 𝑡 A A Clsd J A = F -1 U
102 101 difeq1d φ x U F -1 x J 𝑡 A A Clsd J A F -1 x = F -1 U F -1 x
103 100 102 eqtr4d φ x U F -1 x J 𝑡 A A Clsd J F -1 U x = A F -1 x
104 simpr φ x U F -1 x J 𝑡 A A Clsd J A Clsd J
105 39 ad2antrr φ x U F -1 x J 𝑡 A A Clsd J J 𝑡 A TopOn A
106 toponuni J 𝑡 A TopOn A A = J 𝑡 A
107 105 106 syl φ x U F -1 x J 𝑡 A A Clsd J A = J 𝑡 A
108 107 difeq1d φ x U F -1 x J 𝑡 A A Clsd J A F -1 x = J 𝑡 A F -1 x
109 topontop J 𝑡 A TopOn A J 𝑡 A Top
110 105 109 syl φ x U F -1 x J 𝑡 A A Clsd J J 𝑡 A Top
111 simplrr φ x U F -1 x J 𝑡 A A Clsd J F -1 x J 𝑡 A
112 eqid J 𝑡 A = J 𝑡 A
113 112 opncld J 𝑡 A Top F -1 x J 𝑡 A J 𝑡 A F -1 x Clsd J 𝑡 A
114 110 111 113 syl2anc φ x U F -1 x J 𝑡 A A Clsd J J 𝑡 A F -1 x Clsd J 𝑡 A
115 108 114 eqeltrd φ x U F -1 x J 𝑡 A A Clsd J A F -1 x Clsd J 𝑡 A
116 restcldr A Clsd J A F -1 x Clsd J 𝑡 A A F -1 x Clsd J
117 104 115 116 syl2anc φ x U F -1 x J 𝑡 A A Clsd J A F -1 x Clsd J
118 103 117 eqeltrd φ x U F -1 x J 𝑡 A A Clsd J F -1 U x Clsd J
119 qtopcld J TopOn X F : X onto Y U x Clsd J qTop F U x Y F -1 U x Clsd J
120 1 2 119 syl2anc φ U x Clsd J qTop F U x Y F -1 U x Clsd J
121 120 ad2antrr φ x U F -1 x J 𝑡 A A Clsd J U x Clsd J qTop F U x Y F -1 U x Clsd J
122 96 118 121 mpbir2and φ x U F -1 x J 𝑡 A A Clsd J U x Clsd J qTop F
123 difssd φ x U F -1 x J 𝑡 A A Clsd J U x U
124 eqid J qTop F = J qTop F
125 124 restcldi U J qTop F U x Clsd J qTop F U x U U x Clsd J qTop F 𝑡 U
126 95 122 123 125 syl3anc φ x U F -1 x J 𝑡 A A Clsd J U x Clsd J qTop F 𝑡 U
127 90 126 eqeltrrd φ x U F -1 x J 𝑡 A A Clsd J J qTop F 𝑡 U x Clsd J qTop F 𝑡 U
128 topontop J qTop F 𝑡 U TopOn U J qTop F 𝑡 U Top
129 87 128 syl φ x U F -1 x J 𝑡 A A Clsd J J qTop F 𝑡 U Top
130 simplrl φ x U F -1 x J 𝑡 A A Clsd J x U
131 130 89 sseqtrd φ x U F -1 x J 𝑡 A A Clsd J x J qTop F 𝑡 U
132 eqid J qTop F 𝑡 U = J qTop F 𝑡 U
133 132 isopn2 J qTop F 𝑡 U Top x J qTop F 𝑡 U x J qTop F 𝑡 U J qTop F 𝑡 U x Clsd J qTop F 𝑡 U
134 129 131 133 syl2anc φ x U F -1 x J 𝑡 A A Clsd J x J qTop F 𝑡 U J qTop F 𝑡 U x Clsd J qTop F 𝑡 U
135 127 134 mpbird φ x U F -1 x J 𝑡 A A Clsd J x J qTop F 𝑡 U
136 5 adantr φ x U F -1 x J 𝑡 A A J A Clsd J
137 86 135 136 mpjaodan φ x U F -1 x J 𝑡 A x J qTop F 𝑡 U
138 137 expr φ x U F -1 x J 𝑡 A x J qTop F 𝑡 U
139 58 138 sylbid φ x U F A -1 x J 𝑡 A x J qTop F 𝑡 U
140 139 expimpd φ x U F A -1 x J 𝑡 A x J qTop F 𝑡 U
141 49 140 sylbid φ x J 𝑡 A qTop F A x J qTop F 𝑡 U
142 141 ssrdv φ J 𝑡 A qTop F A J qTop F 𝑡 U
143 37 142 eqssd φ J qTop F 𝑡 U = J 𝑡 A qTop F A