Metamath Proof Explorer


Theorem r0weon

Description: A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of TakeutiZaring p. 54. (Contributed by Mario Carneiro, 7-Mar-2013) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses leweon.1 L=xy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndy
r0weon.1 R=zw|zOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
Assertion r0weon RWeOn×OnRSeOn×On

Proof

Step Hyp Ref Expression
1 leweon.1 L=xy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndy
2 r0weon.1 R=zw|zOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
3 fveq2 x=z1stx=1stz
4 fveq2 x=z2ndx=2ndz
5 3 4 uneq12d x=z1stx2ndx=1stz2ndz
6 eqid xOn×On1stx2ndx=xOn×On1stx2ndx
7 fvex 1stzV
8 fvex 2ndzV
9 7 8 unex 1stz2ndzV
10 5 6 9 fvmpt zOn×OnxOn×On1stx2ndxz=1stz2ndz
11 fveq2 x=w1stx=1stw
12 fveq2 x=w2ndx=2ndw
13 11 12 uneq12d x=w1stx2ndx=1stw2ndw
14 fvex 1stwV
15 fvex 2ndwV
16 14 15 unex 1stw2ndwV
17 13 6 16 fvmpt wOn×OnxOn×On1stx2ndxw=1stw2ndw
18 10 17 breqan12d zOn×OnwOn×OnxOn×On1stx2ndxzExOn×On1stx2ndxw1stz2ndzE1stw2ndw
19 16 epeli 1stz2ndzE1stw2ndw1stz2ndz1stw2ndw
20 18 19 bitrdi zOn×OnwOn×OnxOn×On1stx2ndxzExOn×On1stx2ndxw1stz2ndz1stw2ndw
21 10 17 eqeqan12d zOn×OnwOn×OnxOn×On1stx2ndxz=xOn×On1stx2ndxw1stz2ndz=1stw2ndw
22 21 anbi1d zOn×OnwOn×OnxOn×On1stx2ndxz=xOn×On1stx2ndxwzLw1stz2ndz=1stw2ndwzLw
23 20 22 orbi12d zOn×OnwOn×OnxOn×On1stx2ndxzExOn×On1stx2ndxwxOn×On1stx2ndxz=xOn×On1stx2ndxwzLw1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
24 23 pm5.32i zOn×OnwOn×OnxOn×On1stx2ndxzExOn×On1stx2ndxwxOn×On1stx2ndxz=xOn×On1stx2ndxwzLwzOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
25 24 opabbii zw|zOn×OnwOn×OnxOn×On1stx2ndxzExOn×On1stx2ndxwxOn×On1stx2ndxz=xOn×On1stx2ndxwzLw=zw|zOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzLw
26 2 25 eqtr4i R=zw|zOn×OnwOn×OnxOn×On1stx2ndxzExOn×On1stx2ndxwxOn×On1stx2ndxz=xOn×On1stx2ndxwzLw
27 xp1st xOn×On1stxOn
28 xp2nd xOn×On2ndxOn
29 fvex 1stxV
30 29 elon 1stxOnOrd1stx
31 fvex 2ndxV
32 31 elon 2ndxOnOrd2ndx
33 ordun Ord1stxOrd2ndxOrd1stx2ndx
34 30 32 33 syl2anb 1stxOn2ndxOnOrd1stx2ndx
35 27 28 34 syl2anc xOn×OnOrd1stx2ndx
36 29 31 unex 1stx2ndxV
37 36 elon 1stx2ndxOnOrd1stx2ndx
38 35 37 sylibr xOn×On1stx2ndxOn
39 6 38 fmpti xOn×On1stx2ndx:On×OnOn
40 39 a1i xOn×On1stx2ndx:On×OnOn
41 epweon EWeOn
42 41 a1i EWeOn
43 1 leweon LWeOn×On
44 43 a1i LWeOn×On
45 vex uV
46 45 dmex domuV
47 45 rnex ranuV
48 46 47 unex domuranuV
49 imadmres xOn×On1stx2ndxdomxOn×On1stx2ndxu=xOn×On1stx2ndxu
50 inss2 uOn×OnOn×On
51 ssun1 domudomuranu
52 elinel2 xuOn×OnxOn×On
53 1st2nd2 xOn×Onx=1stx2ndx
54 52 53 syl xuOn×Onx=1stx2ndx
55 elinel1 xuOn×Onxu
56 54 55 eqeltrrd xuOn×On1stx2ndxu
57 29 31 opeldm 1stx2ndxu1stxdomu
58 56 57 syl xuOn×On1stxdomu
59 51 58 sselid xuOn×On1stxdomuranu
60 ssun2 ranudomuranu
61 29 31 opelrn 1stx2ndxu2ndxranu
62 56 61 syl xuOn×On2ndxranu
63 60 62 sselid xuOn×On2ndxdomuranu
64 59 63 prssd xuOn×On1stx2ndxdomuranu
65 52 27 syl xuOn×On1stxOn
66 52 28 syl xuOn×On2ndxOn
67 ordunpr 1stxOn2ndxOn1stx2ndx1stx2ndx
68 65 66 67 syl2anc xuOn×On1stx2ndx1stx2ndx
69 64 68 sseldd xuOn×On1stx2ndxdomuranu
70 69 rgen xuOn×On1stx2ndxdomuranu
71 ssrab uOn×OnxOn×On|1stx2ndxdomuranuuOn×OnOn×OnxuOn×On1stx2ndxdomuranu
72 50 70 71 mpbir2an uOn×OnxOn×On|1stx2ndxdomuranu
73 dmres domxOn×On1stx2ndxu=udomxOn×On1stx2ndx
74 39 fdmi domxOn×On1stx2ndx=On×On
75 74 ineq2i udomxOn×On1stx2ndx=uOn×On
76 73 75 eqtri domxOn×On1stx2ndxu=uOn×On
77 6 mptpreima xOn×On1stx2ndx-1domuranu=xOn×On|1stx2ndxdomuranu
78 72 76 77 3sstr4i domxOn×On1stx2ndxuxOn×On1stx2ndx-1domuranu
79 funmpt FunxOn×On1stx2ndx
80 resss xOn×On1stx2ndxuxOn×On1stx2ndx
81 dmss xOn×On1stx2ndxuxOn×On1stx2ndxdomxOn×On1stx2ndxudomxOn×On1stx2ndx
82 80 81 ax-mp domxOn×On1stx2ndxudomxOn×On1stx2ndx
83 funimass3 FunxOn×On1stx2ndxdomxOn×On1stx2ndxudomxOn×On1stx2ndxxOn×On1stx2ndxdomxOn×On1stx2ndxudomuranudomxOn×On1stx2ndxuxOn×On1stx2ndx-1domuranu
84 79 82 83 mp2an xOn×On1stx2ndxdomxOn×On1stx2ndxudomuranudomxOn×On1stx2ndxuxOn×On1stx2ndx-1domuranu
85 78 84 mpbir xOn×On1stx2ndxdomxOn×On1stx2ndxudomuranu
86 49 85 eqsstrri xOn×On1stx2ndxudomuranu
87 48 86 ssexi xOn×On1stx2ndxuV
88 87 a1i xOn×On1stx2ndxuV
89 26 40 42 44 88 fnwe RWeOn×On
90 epse ESeOn
91 90 a1i ESeOn
92 vuniex uV
93 92 pwex 𝒫uV
94 93 93 xpex 𝒫u×𝒫uV
95 6 mptpreima xOn×On1stx2ndx-1u=xOn×On|1stx2ndxu
96 df-rab xOn×On|1stx2ndxu=x|xOn×On1stx2ndxu
97 95 96 eqtri xOn×On1stx2ndx-1u=x|xOn×On1stx2ndxu
98 53 adantr xOn×On1stx2ndxux=1stx2ndx
99 elssuni 1stx2ndxu1stx2ndxu
100 99 adantl xOn×On1stx2ndxu1stx2ndxu
101 100 unssad xOn×On1stx2ndxu1stxu
102 29 elpw 1stx𝒫u1stxu
103 101 102 sylibr xOn×On1stx2ndxu1stx𝒫u
104 100 unssbd xOn×On1stx2ndxu2ndxu
105 31 elpw 2ndx𝒫u2ndxu
106 104 105 sylibr xOn×On1stx2ndxu2ndx𝒫u
107 103 106 jca xOn×On1stx2ndxu1stx𝒫u2ndx𝒫u
108 elxp6 x𝒫u×𝒫ux=1stx2ndx1stx𝒫u2ndx𝒫u
109 98 107 108 sylanbrc xOn×On1stx2ndxux𝒫u×𝒫u
110 109 abssi x|xOn×On1stx2ndxu𝒫u×𝒫u
111 97 110 eqsstri xOn×On1stx2ndx-1u𝒫u×𝒫u
112 94 111 ssexi xOn×On1stx2ndx-1uV
113 112 a1i xOn×On1stx2ndx-1uV
114 26 40 91 113 fnse RSeOn×On
115 89 114 jca RWeOn×OnRSeOn×On
116 115 mptru RWeOn×OnRSeOn×On