Metamath Proof Explorer


Theorem reccn2

Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014) (Revised by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypothesis reccn2.t T=if1AB1ABA2
Assertion reccn2 A0B+y+z0zA<y1z1A<B

Proof

Step Hyp Ref Expression
1 reccn2.t T=if1AB1ABA2
2 1rp 1+
3 simpl A0B+A0
4 eldifsn A0AA0
5 3 4 sylib A0B+AA0
6 absrpcl AA0A+
7 5 6 syl A0B+A+
8 rpmulcl A+B+AB+
9 7 8 sylancom A0B+AB+
10 ifcl 1+AB+if1AB1AB+
11 2 9 10 sylancr A0B+if1AB1AB+
12 7 rphalfcld A0B+A2+
13 11 12 rpmulcld A0B+if1AB1ABA2+
14 1 13 eqeltrid A0B+T+
15 5 adantr A0B+z0zA<TAA0
16 15 simpld A0B+z0zA<TA
17 simprl A0B+z0zA<Tz0
18 eldifsn z0zz0
19 17 18 sylib A0B+z0zA<Tzz0
20 19 simpld A0B+z0zA<Tz
21 16 20 mulcld A0B+z0zA<TAz
22 mulne0 AA0zz0Az0
23 15 19 22 syl2anc A0B+z0zA<TAz0
24 16 20 21 23 divsubdird A0B+z0zA<TAzAz=AAzzAz
25 16 mulridd A0B+z0zA<TA1=A
26 25 oveq1d A0B+z0zA<TA1Az=AAz
27 1cnd A0B+z0zA<T1
28 divcan5 1zz0AA0A1Az=1z
29 27 19 15 28 syl3anc A0B+z0zA<TA1Az=1z
30 26 29 eqtr3d A0B+z0zA<TAAz=1z
31 20 mulridd A0B+z0zA<Tz1=z
32 20 16 mulcomd A0B+z0zA<TzA=Az
33 31 32 oveq12d A0B+z0zA<Tz1zA=zAz
34 divcan5 1AA0zz0z1zA=1A
35 27 15 19 34 syl3anc A0B+z0zA<Tz1zA=1A
36 33 35 eqtr3d A0B+z0zA<TzAz=1A
37 30 36 oveq12d A0B+z0zA<TAAzzAz=1z1A
38 24 37 eqtrd A0B+z0zA<TAzAz=1z1A
39 38 fveq2d A0B+z0zA<TAzAz=1z1A
40 16 20 subcld A0B+z0zA<TAz
41 40 21 23 absdivd A0B+z0zA<TAzAz=AzAz
42 39 41 eqtr3d A0B+z0zA<T1z1A=AzAz
43 16 20 abssubd A0B+z0zA<TAz=zA
44 20 16 subcld A0B+z0zA<TzA
45 44 abscld A0B+z0zA<TzA
46 43 45 eqeltrd A0B+z0zA<TAz
47 14 adantr A0B+z0zA<TT+
48 47 rpred A0B+z0zA<TT
49 21 abscld A0B+z0zA<TAz
50 rpre B+B
51 50 ad2antlr A0B+z0zA<TB
52 49 51 remulcld A0B+z0zA<TAzB
53 simprr A0B+z0zA<TzA<T
54 43 53 eqbrtrd A0B+z0zA<TAz<T
55 9 adantr A0B+z0zA<TAB+
56 55 rpred A0B+z0zA<TAB
57 12 adantr A0B+z0zA<TA2+
58 57 rpred A0B+z0zA<TA2
59 56 58 remulcld A0B+z0zA<TABA2
60 1re 1
61 min2 1ABif1AB1ABAB
62 60 56 61 sylancr A0B+z0zA<Tif1AB1ABAB
63 11 adantr A0B+z0zA<Tif1AB1AB+
64 63 rpred A0B+z0zA<Tif1AB1AB
65 64 56 57 lemul1d A0B+z0zA<Tif1AB1ABABif1AB1ABA2ABA2
66 62 65 mpbid A0B+z0zA<Tif1AB1ABA2ABA2
67 1 66 eqbrtrid A0B+z0zA<TTABA2
68 20 abscld A0B+z0zA<Tz
69 16 abscld A0B+z0zA<TA
70 69 recnd A0B+z0zA<TA
71 70 2halvesd A0B+z0zA<TA2+A2=A
72 69 68 resubcld A0B+z0zA<TAz
73 16 20 abs2difd A0B+z0zA<TAzAz
74 min1 1ABif1AB1AB1
75 60 56 74 sylancr A0B+z0zA<Tif1AB1AB1
76 1red A0B+z0zA<T1
77 64 76 57 lemul1d A0B+z0zA<Tif1AB1AB1if1AB1ABA21A2
78 75 77 mpbid A0B+z0zA<Tif1AB1ABA21A2
79 1 78 eqbrtrid A0B+z0zA<TT1A2
80 58 recnd A0B+z0zA<TA2
81 80 mullidd A0B+z0zA<T1A2=A2
82 79 81 breqtrd A0B+z0zA<TTA2
83 46 48 58 54 82 ltletrd A0B+z0zA<TAz<A2
84 72 46 58 73 83 lelttrd A0B+z0zA<TAz<A2
85 69 68 58 ltsubadd2d A0B+z0zA<TAz<A2A<z+A2
86 84 85 mpbid A0B+z0zA<TA<z+A2
87 71 86 eqbrtrd A0B+z0zA<TA2+A2<z+A2
88 58 68 58 ltadd1d A0B+z0zA<TA2<zA2+A2<z+A2
89 87 88 mpbird A0B+z0zA<TA2<z
90 58 68 55 89 ltmul2dd A0B+z0zA<TABA2<ABz
91 16 20 absmuld A0B+z0zA<TAz=Az
92 91 oveq1d A0B+z0zA<TAzB=AzB
93 68 recnd A0B+z0zA<Tz
94 51 recnd A0B+z0zA<TB
95 70 93 94 mul32d A0B+z0zA<TAzB=ABz
96 92 95 eqtrd A0B+z0zA<TAzB=ABz
97 90 96 breqtrrd A0B+z0zA<TABA2<AzB
98 48 59 52 67 97 lelttrd A0B+z0zA<TT<AzB
99 46 48 52 54 98 lttrd A0B+z0zA<TAz<AzB
100 21 23 absrpcld A0B+z0zA<TAz+
101 46 51 100 ltdivmuld A0B+z0zA<TAzAz<BAz<AzB
102 99 101 mpbird A0B+z0zA<TAzAz<B
103 42 102 eqbrtrd A0B+z0zA<T1z1A<B
104 103 expr A0B+z0zA<T1z1A<B
105 104 ralrimiva A0B+z0zA<T1z1A<B
106 breq2 y=TzA<yzA<T
107 106 rspceaimv T+z0zA<T1z1A<By+z0zA<y1z1A<B
108 14 105 107 syl2anc A0B+y+z0zA<y1z1A<B