Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Chebyshev's Weak Prime Number Theorem, Dirichlet's Theorem
rplogsumlem1
Next ⟩
rplogsumlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
rplogsumlem1
Description:
Lemma for
rplogsum
.
(Contributed by
Mario Carneiro
, 2-May-2016)
Ref
Expression
Assertion
rplogsumlem1
⊢
A
∈
ℕ
→
∑
n
=
2
A
log
n
n
n
−
1
≤
2
Proof
Step
Hyp
Ref
Expression
1
fzfid
⊢
A
∈
ℕ
→
2
…
A
∈
Fin
2
elfzuz
⊢
n
∈
2
…
A
→
n
∈
ℤ
≥
2
3
eluz2nn
⊢
n
∈
ℤ
≥
2
→
n
∈
ℕ
4
2
3
syl
⊢
n
∈
2
…
A
→
n
∈
ℕ
5
4
adantl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℕ
6
5
nnrpd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℝ
+
7
6
relogcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
log
n
∈
ℝ
8
2
adantl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℤ
≥
2
9
uz2m1nn
⊢
n
∈
ℤ
≥
2
→
n
−
1
∈
ℕ
10
8
9
syl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
∈
ℕ
11
5
10
nnmulcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
∈
ℕ
12
7
11
nndivred
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
log
n
n
n
−
1
∈
ℝ
13
1
12
fsumrecl
⊢
A
∈
ℕ
→
∑
n
=
2
A
log
n
n
n
−
1
∈
ℝ
14
2re
⊢
2
∈
ℝ
15
10
nnrpd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
∈
ℝ
+
16
15
rpsqrtcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
∈
ℝ
+
17
rerpdivcl
⊢
2
∈
ℝ
∧
n
−
1
∈
ℝ
+
→
2
n
−
1
∈
ℝ
18
14
16
17
sylancr
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
1
∈
ℝ
19
6
rpsqrtcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℝ
+
20
rerpdivcl
⊢
2
∈
ℝ
∧
n
∈
ℝ
+
→
2
n
∈
ℝ
21
14
19
20
sylancr
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
∈
ℝ
22
18
21
resubcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
1
−
2
n
∈
ℝ
23
1
22
fsumrecl
⊢
A
∈
ℕ
→
∑
n
=
2
A
2
n
−
1
−
2
n
∈
ℝ
24
14
a1i
⊢
A
∈
ℕ
→
2
∈
ℝ
25
16
rpred
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
∈
ℝ
26
5
nnred
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℝ
27
peano2rem
⊢
n
∈
ℝ
→
n
−
1
∈
ℝ
28
26
27
syl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
∈
ℝ
29
26
28
remulcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
∈
ℝ
30
29
22
remulcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
2
n
−
1
−
2
n
∈
ℝ
31
5
nncnd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℂ
32
ax-1cn
⊢
1
∈
ℂ
33
npcan
⊢
n
∈
ℂ
∧
1
∈
ℂ
→
n
-
1
+
1
=
n
34
31
32
33
sylancl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
-
1
+
1
=
n
35
34
fveq2d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
log
n
-
1
+
1
=
log
n
36
15
rpge0d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
0
≤
n
−
1
37
loglesqrt
⊢
n
−
1
∈
ℝ
∧
0
≤
n
−
1
→
log
n
-
1
+
1
≤
n
−
1
38
28
36
37
syl2anc
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
log
n
-
1
+
1
≤
n
−
1
39
35
38
eqbrtrrd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
log
n
≤
n
−
1
40
19
rpred
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℝ
41
40
25
readdcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
+
n
−
1
∈
ℝ
42
remulcl
⊢
n
∈
ℝ
∧
2
∈
ℝ
→
n
⋅
2
∈
ℝ
43
40
14
42
sylancl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
⋅
2
∈
ℝ
44
40
25
resubcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
n
−
1
∈
ℝ
45
26
lem1d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
≤
n
46
6
rpge0d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
0
≤
n
47
28
36
26
46
sqrtled
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
≤
n
↔
n
−
1
≤
n
48
45
47
mpbid
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
≤
n
49
40
25
subge0d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
0
≤
n
−
n
−
1
↔
n
−
1
≤
n
50
48
49
mpbird
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
0
≤
n
−
n
−
1
51
25
40
40
48
leadd2dd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
+
n
−
1
≤
n
+
n
52
19
rpcnd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℂ
53
52
times2d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
⋅
2
=
n
+
n
54
51
53
breqtrrd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
+
n
−
1
≤
n
⋅
2
55
41
43
44
50
54
lemul1ad
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
+
n
−
1
n
−
n
−
1
≤
n
⋅
2
n
−
n
−
1
56
31
sqsqrtd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
2
=
n
57
subcl
⊢
n
∈
ℂ
∧
1
∈
ℂ
→
n
−
1
∈
ℂ
58
31
32
57
sylancl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
∈
ℂ
59
58
sqsqrtd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
2
=
n
−
1
60
56
59
oveq12d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
2
−
n
−
1
2
=
n
−
n
−
1
61
16
rpcnd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
∈
ℂ
62
subsq
⊢
n
∈
ℂ
∧
n
−
1
∈
ℂ
→
n
2
−
n
−
1
2
=
n
+
n
−
1
n
−
n
−
1
63
52
61
62
syl2anc
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
2
−
n
−
1
2
=
n
+
n
−
1
n
−
n
−
1
64
nncan
⊢
n
∈
ℂ
∧
1
∈
ℂ
→
n
−
n
−
1
=
1
65
31
32
64
sylancl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
n
−
1
=
1
66
60
63
65
3eqtr3d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
+
n
−
1
n
−
n
−
1
=
1
67
2cn
⊢
2
∈
ℂ
68
67
a1i
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
∈
ℂ
69
44
recnd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
n
−
1
∈
ℂ
70
52
68
69
mulassd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
⋅
2
n
−
n
−
1
=
n
2
n
−
n
−
1
71
55
66
70
3brtr3d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
1
≤
n
2
n
−
n
−
1
72
1red
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
1
∈
ℝ
73
remulcl
⊢
2
∈
ℝ
∧
n
−
n
−
1
∈
ℝ
→
2
n
−
n
−
1
∈
ℝ
74
14
44
73
sylancr
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
n
−
1
∈
ℝ
75
40
74
remulcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
2
n
−
n
−
1
∈
ℝ
76
72
75
16
lemul1d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
1
≤
n
2
n
−
n
−
1
↔
1
n
−
1
≤
n
2
n
−
n
−
1
n
−
1
77
71
76
mpbid
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
1
n
−
1
≤
n
2
n
−
n
−
1
n
−
1
78
61
mullidd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
1
n
−
1
=
n
−
1
79
74
recnd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
n
−
1
∈
ℂ
80
52
79
61
mul32d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
2
n
−
n
−
1
n
−
1
=
n
n
−
1
2
n
−
n
−
1
81
77
78
80
3brtr3d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
≤
n
n
−
1
2
n
−
n
−
1
82
remsqsqrt
⊢
n
∈
ℝ
∧
0
≤
n
→
n
n
=
n
83
26
46
82
syl2anc
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
=
n
84
remsqsqrt
⊢
n
−
1
∈
ℝ
∧
0
≤
n
−
1
→
n
−
1
n
−
1
=
n
−
1
85
28
36
84
syl2anc
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
n
−
1
=
n
−
1
86
83
85
oveq12d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
n
−
1
n
−
1
=
n
n
−
1
87
52
52
61
61
mul4d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
n
−
1
n
−
1
=
n
n
−
1
n
n
−
1
88
86
87
eqtr3d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
=
n
n
−
1
n
n
−
1
89
16
rpcnne0d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
∈
ℂ
∧
n
−
1
≠
0
90
19
rpcnne0d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
∈
ℂ
∧
n
≠
0
91
divsubdiv
⊢
2
∈
ℂ
∧
2
∈
ℂ
∧
n
−
1
∈
ℂ
∧
n
−
1
≠
0
∧
n
∈
ℂ
∧
n
≠
0
→
2
n
−
1
−
2
n
=
2
n
−
2
n
−
1
n
−
1
n
92
68
68
89
90
91
syl22anc
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
1
−
2
n
=
2
n
−
2
n
−
1
n
−
1
n
93
68
52
61
subdid
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
n
−
1
=
2
n
−
2
n
−
1
94
52
61
mulcomd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
=
n
−
1
n
95
93
94
oveq12d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
n
−
1
n
n
−
1
=
2
n
−
2
n
−
1
n
−
1
n
96
92
95
eqtr4d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
1
−
2
n
=
2
n
−
n
−
1
n
n
−
1
97
88
96
oveq12d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
2
n
−
1
−
2
n
=
n
n
−
1
n
n
−
1
2
n
−
n
−
1
n
n
−
1
98
52
61
mulcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
∈
ℂ
99
19
16
rpmulcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
∈
ℝ
+
100
74
99
rerpdivcld
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
n
−
1
n
n
−
1
∈
ℝ
101
100
recnd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
n
−
1
n
n
−
1
∈
ℂ
102
98
98
101
mulassd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
n
n
−
1
2
n
−
n
−
1
n
n
−
1
=
n
n
−
1
n
n
−
1
2
n
−
n
−
1
n
n
−
1
103
99
rpne0d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
≠
0
104
79
98
103
divcan2d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
2
n
−
n
−
1
n
n
−
1
=
2
n
−
n
−
1
105
104
oveq2d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
n
n
−
1
2
n
−
n
−
1
n
n
−
1
=
n
n
−
1
2
n
−
n
−
1
106
97
102
105
3eqtrd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
n
−
1
2
n
−
1
−
2
n
=
n
n
−
1
2
n
−
n
−
1
107
81
106
breqtrrd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
−
1
≤
n
n
−
1
2
n
−
1
−
2
n
108
7
25
30
39
107
letrd
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
log
n
≤
n
n
−
1
2
n
−
1
−
2
n
109
11
nngt0d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
0
<
n
n
−
1
110
ledivmul
⊢
log
n
∈
ℝ
∧
2
n
−
1
−
2
n
∈
ℝ
∧
n
n
−
1
∈
ℝ
∧
0
<
n
n
−
1
→
log
n
n
n
−
1
≤
2
n
−
1
−
2
n
↔
log
n
≤
n
n
−
1
2
n
−
1
−
2
n
111
7
22
29
109
110
syl112anc
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
log
n
n
n
−
1
≤
2
n
−
1
−
2
n
↔
log
n
≤
n
n
−
1
2
n
−
1
−
2
n
112
108
111
mpbird
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
log
n
n
n
−
1
≤
2
n
−
1
−
2
n
113
1
12
22
112
fsumle
⊢
A
∈
ℕ
→
∑
n
=
2
A
log
n
n
n
−
1
≤
∑
n
=
2
A
2
n
−
1
−
2
n
114
fvoveq1
⊢
k
=
n
→
k
−
1
=
n
−
1
115
114
oveq2d
⊢
k
=
n
→
2
k
−
1
=
2
n
−
1
116
fvoveq1
⊢
k
=
n
+
1
→
k
−
1
=
n
+
1
-
1
117
116
oveq2d
⊢
k
=
n
+
1
→
2
k
−
1
=
2
n
+
1
-
1
118
oveq1
⊢
k
=
2
→
k
−
1
=
2
−
1
119
2m1e1
⊢
2
−
1
=
1
120
118
119
eqtrdi
⊢
k
=
2
→
k
−
1
=
1
121
120
fveq2d
⊢
k
=
2
→
k
−
1
=
1
122
sqrt1
⊢
1
=
1
123
121
122
eqtrdi
⊢
k
=
2
→
k
−
1
=
1
124
123
oveq2d
⊢
k
=
2
→
2
k
−
1
=
2
1
125
67
div1i
⊢
2
1
=
2
126
124
125
eqtrdi
⊢
k
=
2
→
2
k
−
1
=
2
127
fvoveq1
⊢
k
=
A
+
1
→
k
−
1
=
A
+
1
-
1
128
127
oveq2d
⊢
k
=
A
+
1
→
2
k
−
1
=
2
A
+
1
-
1
129
nnz
⊢
A
∈
ℕ
→
A
∈
ℤ
130
eluzp1p1
⊢
A
∈
ℤ
≥
1
→
A
+
1
∈
ℤ
≥
1
+
1
131
nnuz
⊢
ℕ
=
ℤ
≥
1
132
130
131
eleq2s
⊢
A
∈
ℕ
→
A
+
1
∈
ℤ
≥
1
+
1
133
df-2
⊢
2
=
1
+
1
134
133
fveq2i
⊢
ℤ
≥
2
=
ℤ
≥
1
+
1
135
132
134
eleqtrrdi
⊢
A
∈
ℕ
→
A
+
1
∈
ℤ
≥
2
136
elfzuz
⊢
k
∈
2
…
A
+
1
→
k
∈
ℤ
≥
2
137
uz2m1nn
⊢
k
∈
ℤ
≥
2
→
k
−
1
∈
ℕ
138
136
137
syl
⊢
k
∈
2
…
A
+
1
→
k
−
1
∈
ℕ
139
138
adantl
⊢
A
∈
ℕ
∧
k
∈
2
…
A
+
1
→
k
−
1
∈
ℕ
140
139
nnrpd
⊢
A
∈
ℕ
∧
k
∈
2
…
A
+
1
→
k
−
1
∈
ℝ
+
141
140
rpsqrtcld
⊢
A
∈
ℕ
∧
k
∈
2
…
A
+
1
→
k
−
1
∈
ℝ
+
142
rerpdivcl
⊢
2
∈
ℝ
∧
k
−
1
∈
ℝ
+
→
2
k
−
1
∈
ℝ
143
14
141
142
sylancr
⊢
A
∈
ℕ
∧
k
∈
2
…
A
+
1
→
2
k
−
1
∈
ℝ
144
143
recnd
⊢
A
∈
ℕ
∧
k
∈
2
…
A
+
1
→
2
k
−
1
∈
ℂ
145
115
117
126
128
129
135
144
telfsum
⊢
A
∈
ℕ
→
∑
n
=
2
A
2
n
−
1
−
2
n
+
1
-
1
=
2
−
2
A
+
1
-
1
146
pncan
⊢
n
∈
ℂ
∧
1
∈
ℂ
→
n
+
1
-
1
=
n
147
31
32
146
sylancl
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
+
1
-
1
=
n
148
147
fveq2d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
n
+
1
-
1
=
n
149
148
oveq2d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
+
1
-
1
=
2
n
150
149
oveq2d
⊢
A
∈
ℕ
∧
n
∈
2
…
A
→
2
n
−
1
−
2
n
+
1
-
1
=
2
n
−
1
−
2
n
151
150
sumeq2dv
⊢
A
∈
ℕ
→
∑
n
=
2
A
2
n
−
1
−
2
n
+
1
-
1
=
∑
n
=
2
A
2
n
−
1
−
2
n
152
nncn
⊢
A
∈
ℕ
→
A
∈
ℂ
153
pncan
⊢
A
∈
ℂ
∧
1
∈
ℂ
→
A
+
1
-
1
=
A
154
152
32
153
sylancl
⊢
A
∈
ℕ
→
A
+
1
-
1
=
A
155
154
fveq2d
⊢
A
∈
ℕ
→
A
+
1
-
1
=
A
156
155
oveq2d
⊢
A
∈
ℕ
→
2
A
+
1
-
1
=
2
A
157
156
oveq2d
⊢
A
∈
ℕ
→
2
−
2
A
+
1
-
1
=
2
−
2
A
158
145
151
157
3eqtr3d
⊢
A
∈
ℕ
→
∑
n
=
2
A
2
n
−
1
−
2
n
=
2
−
2
A
159
2rp
⊢
2
∈
ℝ
+
160
nnrp
⊢
A
∈
ℕ
→
A
∈
ℝ
+
161
160
rpsqrtcld
⊢
A
∈
ℕ
→
A
∈
ℝ
+
162
rpdivcl
⊢
2
∈
ℝ
+
∧
A
∈
ℝ
+
→
2
A
∈
ℝ
+
163
159
161
162
sylancr
⊢
A
∈
ℕ
→
2
A
∈
ℝ
+
164
163
rpge0d
⊢
A
∈
ℕ
→
0
≤
2
A
165
163
rpred
⊢
A
∈
ℕ
→
2
A
∈
ℝ
166
subge02
⊢
2
∈
ℝ
∧
2
A
∈
ℝ
→
0
≤
2
A
↔
2
−
2
A
≤
2
167
14
165
166
sylancr
⊢
A
∈
ℕ
→
0
≤
2
A
↔
2
−
2
A
≤
2
168
164
167
mpbid
⊢
A
∈
ℕ
→
2
−
2
A
≤
2
169
158
168
eqbrtrd
⊢
A
∈
ℕ
→
∑
n
=
2
A
2
n
−
1
−
2
n
≤
2
170
13
23
24
113
169
letrd
⊢
A
∈
ℕ
→
∑
n
=
2
A
log
n
n
n
−
1
≤
2