| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setcmon.c |  | 
						
							| 2 |  | setcmon.u |  | 
						
							| 3 |  | setcmon.x |  | 
						
							| 4 |  | setcmon.y |  | 
						
							| 5 |  | setcepi.h |  | 
						
							| 6 |  | setcepi.2 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 1 | setccat |  | 
						
							| 11 | 2 10 | syl |  | 
						
							| 12 | 1 2 | setcbas |  | 
						
							| 13 | 3 12 | eleqtrd |  | 
						
							| 14 | 4 12 | eleqtrd |  | 
						
							| 15 | 7 8 9 5 11 13 14 | epihom |  | 
						
							| 16 | 15 | sselda |  | 
						
							| 17 | 1 2 8 3 4 | elsetchom |  | 
						
							| 18 | 17 | biimpa |  | 
						
							| 19 | 16 18 | syldan |  | 
						
							| 20 | 19 | frnd |  | 
						
							| 21 | 19 | ffnd |  | 
						
							| 22 |  | fnfvelrn |  | 
						
							| 23 | 21 22 | sylan |  | 
						
							| 24 | 23 | iftrued |  | 
						
							| 25 | 24 | mpteq2dva |  | 
						
							| 26 | 19 | ffvelcdmda |  | 
						
							| 27 | 19 | feqmptd |  | 
						
							| 28 |  | eqidd |  | 
						
							| 29 |  | eleq1 |  | 
						
							| 30 | 29 | ifbid |  | 
						
							| 31 | 26 27 28 30 | fmptco |  | 
						
							| 32 |  | fconstmpt |  | 
						
							| 33 | 32 | a1i |  | 
						
							| 34 |  | eqidd |  | 
						
							| 35 | 26 27 33 34 | fmptco |  | 
						
							| 36 | 25 31 35 | 3eqtr4d |  | 
						
							| 37 | 2 | adantr |  | 
						
							| 38 | 3 | adantr |  | 
						
							| 39 | 4 | adantr |  | 
						
							| 40 | 6 | adantr |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | 1oex |  | 
						
							| 43 | 42 | prid2 |  | 
						
							| 44 |  | df2o3 |  | 
						
							| 45 | 43 44 | eleqtrri |  | 
						
							| 46 |  | 0ex |  | 
						
							| 47 | 46 | prid1 |  | 
						
							| 48 | 47 44 | eleqtrri |  | 
						
							| 49 | 45 48 | ifcli |  | 
						
							| 50 | 49 | a1i |  | 
						
							| 51 | 41 50 | fmpti |  | 
						
							| 52 | 51 | a1i |  | 
						
							| 53 | 1 37 9 38 39 40 19 52 | setcco |  | 
						
							| 54 |  | fconst6g |  | 
						
							| 55 | 45 54 | mp1i |  | 
						
							| 56 | 1 37 9 38 39 40 19 55 | setcco |  | 
						
							| 57 | 36 53 56 | 3eqtr4d |  | 
						
							| 58 | 11 | adantr |  | 
						
							| 59 | 13 | adantr |  | 
						
							| 60 | 14 | adantr |  | 
						
							| 61 | 6 12 | eleqtrd |  | 
						
							| 62 | 61 | adantr |  | 
						
							| 63 |  | simpr |  | 
						
							| 64 | 1 37 8 39 40 | elsetchom |  | 
						
							| 65 | 52 64 | mpbird |  | 
						
							| 66 | 1 37 8 39 40 | elsetchom |  | 
						
							| 67 | 55 66 | mpbird |  | 
						
							| 68 | 7 8 9 5 58 59 60 62 63 65 67 | epii |  | 
						
							| 69 | 57 68 | mpbid |  | 
						
							| 70 | 69 32 | eqtrdi |  | 
						
							| 71 | 49 | rgenw |  | 
						
							| 72 |  | mpteqb |  | 
						
							| 73 | 71 72 | ax-mp |  | 
						
							| 74 | 70 73 | sylib |  | 
						
							| 75 |  | 1n0 |  | 
						
							| 76 | 75 | nesymi |  | 
						
							| 77 |  | iffalse |  | 
						
							| 78 | 77 | eqeq1d |  | 
						
							| 79 | 76 78 | mtbiri |  | 
						
							| 80 | 79 | con4i |  | 
						
							| 81 | 80 | ralimi |  | 
						
							| 82 | 74 81 | syl |  | 
						
							| 83 |  | dfss3 |  | 
						
							| 84 | 82 83 | sylibr |  | 
						
							| 85 | 20 84 | eqssd |  | 
						
							| 86 |  | dffo2 |  | 
						
							| 87 | 19 85 86 | sylanbrc |  | 
						
							| 88 |  | fof |  | 
						
							| 89 | 88 | adantl |  | 
						
							| 90 | 17 | biimpar |  | 
						
							| 91 | 89 90 | syldan |  | 
						
							| 92 | 12 | adantr |  | 
						
							| 93 | 92 | eleq2d |  | 
						
							| 94 | 2 | ad2antrr |  | 
						
							| 95 | 3 | ad2antrr |  | 
						
							| 96 | 4 | ad2antrr |  | 
						
							| 97 |  | simprl |  | 
						
							| 98 | 89 | adantr |  | 
						
							| 99 |  | simprrl |  | 
						
							| 100 | 1 94 8 96 97 | elsetchom |  | 
						
							| 101 | 99 100 | mpbid |  | 
						
							| 102 | 1 94 9 95 96 97 98 101 | setcco |  | 
						
							| 103 |  | simprrr |  | 
						
							| 104 | 1 94 8 96 97 | elsetchom |  | 
						
							| 105 | 103 104 | mpbid |  | 
						
							| 106 | 1 94 9 95 96 97 98 105 | setcco |  | 
						
							| 107 | 102 106 | eqeq12d |  | 
						
							| 108 |  | simplr |  | 
						
							| 109 | 101 | ffnd |  | 
						
							| 110 | 105 | ffnd |  | 
						
							| 111 |  | cocan2 |  | 
						
							| 112 | 108 109 110 111 | syl3anc |  | 
						
							| 113 | 112 | biimpd |  | 
						
							| 114 | 107 113 | sylbid |  | 
						
							| 115 | 114 | anassrs |  | 
						
							| 116 | 115 | ralrimivva |  | 
						
							| 117 | 116 | ex |  | 
						
							| 118 | 93 117 | sylbird |  | 
						
							| 119 | 118 | ralrimiv |  | 
						
							| 120 | 7 8 9 5 11 13 14 | isepi2 |  | 
						
							| 121 | 120 | adantr |  | 
						
							| 122 | 91 119 121 | mpbir2and |  | 
						
							| 123 | 87 122 | impbida |  |