Metamath Proof Explorer


Theorem setcepi

Description: An epimorphism of sets is a surjection. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcmon.c C=SetCatU
setcmon.u φUV
setcmon.x φXU
setcmon.y φYU
setcepi.h E=EpiC
setcepi.2 φ2𝑜U
Assertion setcepi φFXEYF:XontoY

Proof

Step Hyp Ref Expression
1 setcmon.c C=SetCatU
2 setcmon.u φUV
3 setcmon.x φXU
4 setcmon.y φYU
5 setcepi.h E=EpiC
6 setcepi.2 φ2𝑜U
7 eqid BaseC=BaseC
8 eqid HomC=HomC
9 eqid compC=compC
10 1 setccat UVCCat
11 2 10 syl φCCat
12 1 2 setcbas φU=BaseC
13 3 12 eleqtrd φXBaseC
14 4 12 eleqtrd φYBaseC
15 7 8 9 5 11 13 14 epihom φXEYXHomCY
16 15 sselda φFXEYFXHomCY
17 1 2 8 3 4 elsetchom φFXHomCYF:XY
18 17 biimpa φFXHomCYF:XY
19 16 18 syldan φFXEYF:XY
20 19 frnd φFXEYranFY
21 19 ffnd φFXEYFFnX
22 fnfvelrn FFnXxXFxranF
23 21 22 sylan φFXEYxXFxranF
24 23 iftrued φFXEYxXifFxranF1𝑜=1𝑜
25 24 mpteq2dva φFXEYxXifFxranF1𝑜=xX1𝑜
26 19 ffvelcdmda φFXEYxXFxY
27 19 feqmptd φFXEYF=xXFx
28 eqidd φFXEYaYifaranF1𝑜=aYifaranF1𝑜
29 eleq1 a=FxaranFFxranF
30 29 ifbid a=FxifaranF1𝑜=ifFxranF1𝑜
31 26 27 28 30 fmptco φFXEYaYifaranF1𝑜F=xXifFxranF1𝑜
32 fconstmpt Y×1𝑜=aY1𝑜
33 32 a1i φFXEYY×1𝑜=aY1𝑜
34 eqidd a=Fx1𝑜=1𝑜
35 26 27 33 34 fmptco φFXEYY×1𝑜F=xX1𝑜
36 25 31 35 3eqtr4d φFXEYaYifaranF1𝑜F=Y×1𝑜F
37 2 adantr φFXEYUV
38 3 adantr φFXEYXU
39 4 adantr φFXEYYU
40 6 adantr φFXEY2𝑜U
41 eqid aYifaranF1𝑜=aYifaranF1𝑜
42 1oex 1𝑜V
43 42 prid2 1𝑜1𝑜
44 df2o3 2𝑜=1𝑜
45 43 44 eleqtrri 1𝑜2𝑜
46 0ex V
47 46 prid1 1𝑜
48 47 44 eleqtrri 2𝑜
49 45 48 ifcli ifaranF1𝑜2𝑜
50 49 a1i aYifaranF1𝑜2𝑜
51 41 50 fmpti aYifaranF1𝑜:Y2𝑜
52 51 a1i φFXEYaYifaranF1𝑜:Y2𝑜
53 1 37 9 38 39 40 19 52 setcco φFXEYaYifaranF1𝑜XYcompC2𝑜F=aYifaranF1𝑜F
54 fconst6g 1𝑜2𝑜Y×1𝑜:Y2𝑜
55 45 54 mp1i φFXEYY×1𝑜:Y2𝑜
56 1 37 9 38 39 40 19 55 setcco φFXEYY×1𝑜XYcompC2𝑜F=Y×1𝑜F
57 36 53 56 3eqtr4d φFXEYaYifaranF1𝑜XYcompC2𝑜F=Y×1𝑜XYcompC2𝑜F
58 11 adantr φFXEYCCat
59 13 adantr φFXEYXBaseC
60 14 adantr φFXEYYBaseC
61 6 12 eleqtrd φ2𝑜BaseC
62 61 adantr φFXEY2𝑜BaseC
63 simpr φFXEYFXEY
64 1 37 8 39 40 elsetchom φFXEYaYifaranF1𝑜YHomC2𝑜aYifaranF1𝑜:Y2𝑜
65 52 64 mpbird φFXEYaYifaranF1𝑜YHomC2𝑜
66 1 37 8 39 40 elsetchom φFXEYY×1𝑜YHomC2𝑜Y×1𝑜:Y2𝑜
67 55 66 mpbird φFXEYY×1𝑜YHomC2𝑜
68 7 8 9 5 58 59 60 62 63 65 67 epii φFXEYaYifaranF1𝑜XYcompC2𝑜F=Y×1𝑜XYcompC2𝑜FaYifaranF1𝑜=Y×1𝑜
69 57 68 mpbid φFXEYaYifaranF1𝑜=Y×1𝑜
70 69 32 eqtrdi φFXEYaYifaranF1𝑜=aY1𝑜
71 49 rgenw aYifaranF1𝑜2𝑜
72 mpteqb aYifaranF1𝑜2𝑜aYifaranF1𝑜=aY1𝑜aYifaranF1𝑜=1𝑜
73 71 72 ax-mp aYifaranF1𝑜=aY1𝑜aYifaranF1𝑜=1𝑜
74 70 73 sylib φFXEYaYifaranF1𝑜=1𝑜
75 1n0 1𝑜
76 75 nesymi ¬=1𝑜
77 iffalse ¬aranFifaranF1𝑜=
78 77 eqeq1d ¬aranFifaranF1𝑜=1𝑜=1𝑜
79 76 78 mtbiri ¬aranF¬ifaranF1𝑜=1𝑜
80 79 con4i ifaranF1𝑜=1𝑜aranF
81 80 ralimi aYifaranF1𝑜=1𝑜aYaranF
82 74 81 syl φFXEYaYaranF
83 dfss3 YranFaYaranF
84 82 83 sylibr φFXEYYranF
85 20 84 eqssd φFXEYranF=Y
86 dffo2 F:XontoYF:XYranF=Y
87 19 85 86 sylanbrc φFXEYF:XontoY
88 fof F:XontoYF:XY
89 88 adantl φF:XontoYF:XY
90 17 biimpar φF:XYFXHomCY
91 89 90 syldan φF:XontoYFXHomCY
92 12 adantr φF:XontoYU=BaseC
93 92 eleq2d φF:XontoYzUzBaseC
94 2 ad2antrr φF:XontoYzUgYHomCzhYHomCzUV
95 3 ad2antrr φF:XontoYzUgYHomCzhYHomCzXU
96 4 ad2antrr φF:XontoYzUgYHomCzhYHomCzYU
97 simprl φF:XontoYzUgYHomCzhYHomCzzU
98 89 adantr φF:XontoYzUgYHomCzhYHomCzF:XY
99 simprrl φF:XontoYzUgYHomCzhYHomCzgYHomCz
100 1 94 8 96 97 elsetchom φF:XontoYzUgYHomCzhYHomCzgYHomCzg:Yz
101 99 100 mpbid φF:XontoYzUgYHomCzhYHomCzg:Yz
102 1 94 9 95 96 97 98 101 setcco φF:XontoYzUgYHomCzhYHomCzgXYcompCzF=gF
103 simprrr φF:XontoYzUgYHomCzhYHomCzhYHomCz
104 1 94 8 96 97 elsetchom φF:XontoYzUgYHomCzhYHomCzhYHomCzh:Yz
105 103 104 mpbid φF:XontoYzUgYHomCzhYHomCzh:Yz
106 1 94 9 95 96 97 98 105 setcco φF:XontoYzUgYHomCzhYHomCzhXYcompCzF=hF
107 102 106 eqeq12d φF:XontoYzUgYHomCzhYHomCzgXYcompCzF=hXYcompCzFgF=hF
108 simplr φF:XontoYzUgYHomCzhYHomCzF:XontoY
109 101 ffnd φF:XontoYzUgYHomCzhYHomCzgFnY
110 105 ffnd φF:XontoYzUgYHomCzhYHomCzhFnY
111 cocan2 F:XontoYgFnYhFnYgF=hFg=h
112 108 109 110 111 syl3anc φF:XontoYzUgYHomCzhYHomCzgF=hFg=h
113 112 biimpd φF:XontoYzUgYHomCzhYHomCzgF=hFg=h
114 107 113 sylbid φF:XontoYzUgYHomCzhYHomCzgXYcompCzF=hXYcompCzFg=h
115 114 anassrs φF:XontoYzUgYHomCzhYHomCzgXYcompCzF=hXYcompCzFg=h
116 115 ralrimivva φF:XontoYzUgYHomCzhYHomCzgXYcompCzF=hXYcompCzFg=h
117 116 ex φF:XontoYzUgYHomCzhYHomCzgXYcompCzF=hXYcompCzFg=h
118 93 117 sylbird φF:XontoYzBaseCgYHomCzhYHomCzgXYcompCzF=hXYcompCzFg=h
119 118 ralrimiv φF:XontoYzBaseCgYHomCzhYHomCzgXYcompCzF=hXYcompCzFg=h
120 7 8 9 5 11 13 14 isepi2 φFXEYFXHomCYzBaseCgYHomCzhYHomCzgXYcompCzF=hXYcompCzFg=h
121 120 adantr φF:XontoYFXEYFXHomCYzBaseCgYHomCzhYHomCzgXYcompCzF=hXYcompCzFg=h
122 91 119 121 mpbir2and φF:XontoYFXEY
123 87 122 impbida φFXEYF:XontoY