Metamath Proof Explorer


Theorem smfco

Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfco.s φSSAlg
smfco.f φFSMblFnS
smfco.j J=topGenran.
smfco.b B=SalGenJ
smfco.h φHSMblFnB
Assertion smfco φHFSMblFnS

Proof

Step Hyp Ref Expression
1 smfco.s φSSAlg
2 smfco.f φFSMblFnS
3 smfco.j J=topGenran.
4 smfco.b B=SalGenJ
5 smfco.h φHSMblFnB
6 nfv aφ
7 cnvimass F-1domHdomF
8 7 a1i φF-1domHdomF
9 eqid domF=domF
10 1 2 9 smfdmss φdomFS
11 8 10 sstrd φF-1domHS
12 retop topGenran.Top
13 3 12 eqeltri JTop
14 13 a1i φJTop
15 14 4 salgencld φBSAlg
16 eqid domH=domH
17 15 5 16 smff φH:domH
18 17 ffund φFunH
19 1 2 9 smff φF:domF
20 19 ffund φFunF
21 18 20 funcofd φHF:F-1domHranH
22 17 frnd φranH
23 21 22 fssd φHF:F-1domH
24 cnvco HF-1=F-1H-1
25 24 imaeq1i HF-1−∞a=F-1H-1−∞a
26 23 adantr φaHF:F-1domH
27 rexr aa*
28 27 adantl φaa*
29 26 28 preimaioomnf φaHF-1−∞a=xF-1domH|HFx<a
30 imaco F-1H-1−∞a=F-1H-1−∞a
31 30 a1i φaF-1H-1−∞a=F-1H-1−∞a
32 25 29 31 3eqtr3a φaxF-1domH|HFx<a=F-1H-1−∞a
33 17 adantr φaH:domH
34 33 28 preimaioomnf φaH-1−∞a=xdomH|Hx<a
35 15 adantr φaBSAlg
36 5 adantr φaHSMblFnB
37 simpr φaa
38 35 36 16 37 smfpreimalt φaxdomH|Hx<aB𝑡domH
39 34 38 eqeltrd φaH-1−∞aB𝑡domH
40 15 elexd φBV
41 5 dmexd φdomHV
42 elrest BVdomHVH-1−∞aB𝑡domHeBH-1−∞a=edomH
43 40 41 42 syl2anc φH-1−∞aB𝑡domHeBH-1−∞a=edomH
44 43 adantr φaH-1−∞aB𝑡domHeBH-1−∞a=edomH
45 39 44 mpbid φaeBH-1−∞a=edomH
46 imaeq2 H-1−∞a=edomHF-1H-1−∞a=F-1edomH
47 46 3ad2ant3 φeBH-1−∞a=edomHF-1H-1−∞a=F-1edomH
48 ovexd φeBS𝑡domFV
49 2 elexd φFV
50 cnvexg FVF-1V
51 imaexg F-1VF-1domHV
52 49 50 51 3syl φF-1domHV
53 52 adantr φeBF-1domHV
54 1 adantr φeBSSAlg
55 2 adantr φeBFSMblFnS
56 simpr φeBeB
57 eqid F-1e=F-1e
58 54 55 9 3 4 56 57 smfpimbor1 φeBF-1eS𝑡domF
59 eqid F-1eF-1domH=F-1eF-1domH
60 48 53 58 59 elrestd φeBF-1eF-1domHS𝑡domF𝑡F-1domH
61 inpreima FunFF-1edomH=F-1eF-1domH
62 20 61 syl φF-1edomH=F-1eF-1domH
63 62 adantr φeBF-1edomH=F-1eF-1domH
64 2 dmexd φdomFV
65 restabs SSAlgF-1domHdomFdomFVS𝑡domF𝑡F-1domH=S𝑡F-1domH
66 1 8 64 65 syl3anc φS𝑡domF𝑡F-1domH=S𝑡F-1domH
67 66 eqcomd φS𝑡F-1domH=S𝑡domF𝑡F-1domH
68 67 adantr φeBS𝑡F-1domH=S𝑡domF𝑡F-1domH
69 60 63 68 3eltr4d φeBF-1edomHS𝑡F-1domH
70 69 3adant3 φeBH-1−∞a=edomHF-1edomHS𝑡F-1domH
71 47 70 eqeltrd φeBH-1−∞a=edomHF-1H-1−∞aS𝑡F-1domH
72 71 3exp φeBH-1−∞a=edomHF-1H-1−∞aS𝑡F-1domH
73 72 adantr φaeBH-1−∞a=edomHF-1H-1−∞aS𝑡F-1domH
74 73 rexlimdv φaeBH-1−∞a=edomHF-1H-1−∞aS𝑡F-1domH
75 45 74 mpd φaF-1H-1−∞aS𝑡F-1domH
76 32 75 eqeltrd φaxF-1domH|HFx<aS𝑡F-1domH
77 6 1 11 23 76 issmfd φHFSMblFnS