Metamath Proof Explorer


Theorem smfco

Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfco.s φ S SAlg
smfco.f φ F SMblFn S
smfco.j J = topGen ran .
smfco.b B = SalGen J
smfco.h φ H SMblFn B
Assertion smfco φ H F SMblFn S

Proof

Step Hyp Ref Expression
1 smfco.s φ S SAlg
2 smfco.f φ F SMblFn S
3 smfco.j J = topGen ran .
4 smfco.b B = SalGen J
5 smfco.h φ H SMblFn B
6 nfv a φ
7 cnvimass F -1 dom H dom F
8 7 a1i φ F -1 dom H dom F
9 eqid dom F = dom F
10 1 2 9 smfdmss φ dom F S
11 8 10 sstrd φ F -1 dom H S
12 retop topGen ran . Top
13 3 12 eqeltri J Top
14 13 a1i φ J Top
15 14 4 salgencld φ B SAlg
16 eqid dom H = dom H
17 15 5 16 smff φ H : dom H
18 17 ffund φ Fun H
19 1 2 9 smff φ F : dom F
20 19 ffund φ Fun F
21 18 20 fco3 φ H F : F -1 dom H ran H
22 17 frnd φ ran H
23 21 22 fssd φ H F : F -1 dom H
24 23 adantr φ a H F : F -1 dom H
25 rexr a a *
26 25 adantl φ a a *
27 24 26 preimaioomnf φ a H F -1 −∞ a = x F -1 dom H | H F x < a
28 27 eqcomd φ a x F -1 dom H | H F x < a = H F -1 −∞ a
29 cnvco H F -1 = F -1 H -1
30 29 imaeq1i H F -1 −∞ a = F -1 H -1 −∞ a
31 30 a1i φ a H F -1 −∞ a = F -1 H -1 −∞ a
32 imaco F -1 H -1 −∞ a = F -1 H -1 −∞ a
33 32 a1i φ a F -1 H -1 −∞ a = F -1 H -1 −∞ a
34 28 31 33 3eqtrd φ a x F -1 dom H | H F x < a = F -1 H -1 −∞ a
35 17 adantr φ a H : dom H
36 35 26 preimaioomnf φ a H -1 −∞ a = x dom H | H x < a
37 36 eqcomd φ a x dom H | H x < a = H -1 −∞ a
38 37 eqcomd φ a H -1 −∞ a = x dom H | H x < a
39 15 adantr φ a B SAlg
40 5 adantr φ a H SMblFn B
41 simpr φ a a
42 39 40 16 41 smfpreimalt φ a x dom H | H x < a B 𝑡 dom H
43 38 42 eqeltrd φ a H -1 −∞ a B 𝑡 dom H
44 15 elexd φ B V
45 5 dmexd φ dom H V
46 elrest B V dom H V H -1 −∞ a B 𝑡 dom H e B H -1 −∞ a = e dom H
47 44 45 46 syl2anc φ H -1 −∞ a B 𝑡 dom H e B H -1 −∞ a = e dom H
48 47 adantr φ a H -1 −∞ a B 𝑡 dom H e B H -1 −∞ a = e dom H
49 43 48 mpbid φ a e B H -1 −∞ a = e dom H
50 imaeq2 H -1 −∞ a = e dom H F -1 H -1 −∞ a = F -1 e dom H
51 50 3ad2ant3 φ e B H -1 −∞ a = e dom H F -1 H -1 −∞ a = F -1 e dom H
52 ovexd φ e B S 𝑡 dom F V
53 2 elexd φ F V
54 cnvexg F V F -1 V
55 53 54 syl φ F -1 V
56 imaexg F -1 V F -1 dom H V
57 55 56 syl φ F -1 dom H V
58 57 adantr φ e B F -1 dom H V
59 1 adantr φ e B S SAlg
60 2 adantr φ e B F SMblFn S
61 simpr φ e B e B
62 eqid F -1 e = F -1 e
63 59 60 9 3 4 61 62 smfpimbor1 φ e B F -1 e S 𝑡 dom F
64 eqid F -1 e F -1 dom H = F -1 e F -1 dom H
65 52 58 63 64 elrestd φ e B F -1 e F -1 dom H S 𝑡 dom F 𝑡 F -1 dom H
66 inpreima Fun F F -1 e dom H = F -1 e F -1 dom H
67 20 66 syl φ F -1 e dom H = F -1 e F -1 dom H
68 67 adantr φ e B F -1 e dom H = F -1 e F -1 dom H
69 2 dmexd φ dom F V
70 restabs S SAlg F -1 dom H dom F dom F V S 𝑡 dom F 𝑡 F -1 dom H = S 𝑡 F -1 dom H
71 1 8 69 70 syl3anc φ S 𝑡 dom F 𝑡 F -1 dom H = S 𝑡 F -1 dom H
72 71 eqcomd φ S 𝑡 F -1 dom H = S 𝑡 dom F 𝑡 F -1 dom H
73 72 adantr φ e B S 𝑡 F -1 dom H = S 𝑡 dom F 𝑡 F -1 dom H
74 68 73 eleq12d φ e B F -1 e dom H S 𝑡 F -1 dom H F -1 e F -1 dom H S 𝑡 dom F 𝑡 F -1 dom H
75 65 74 mpbird φ e B F -1 e dom H S 𝑡 F -1 dom H
76 75 3adant3 φ e B H -1 −∞ a = e dom H F -1 e dom H S 𝑡 F -1 dom H
77 51 76 eqeltrd φ e B H -1 −∞ a = e dom H F -1 H -1 −∞ a S 𝑡 F -1 dom H
78 77 3exp φ e B H -1 −∞ a = e dom H F -1 H -1 −∞ a S 𝑡 F -1 dom H
79 78 adantr φ a e B H -1 −∞ a = e dom H F -1 H -1 −∞ a S 𝑡 F -1 dom H
80 79 rexlimdv φ a e B H -1 −∞ a = e dom H F -1 H -1 −∞ a S 𝑡 F -1 dom H
81 49 80 mpd φ a F -1 H -1 −∞ a S 𝑡 F -1 dom H
82 34 81 eqeltrd φ a x F -1 dom H | H F x < a S 𝑡 F -1 dom H
83 6 1 11 23 82 issmfd φ H F SMblFn S