| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfco.s |
|
| 2 |
|
smfco.f |
|
| 3 |
|
smfco.j |
|
| 4 |
|
smfco.b |
|
| 5 |
|
smfco.h |
|
| 6 |
|
nfv |
|
| 7 |
|
cnvimass |
|
| 8 |
7
|
a1i |
|
| 9 |
|
eqid |
|
| 10 |
1 2 9
|
smfdmss |
|
| 11 |
8 10
|
sstrd |
|
| 12 |
|
retop |
|
| 13 |
3 12
|
eqeltri |
|
| 14 |
13
|
a1i |
|
| 15 |
14 4
|
salgencld |
|
| 16 |
|
eqid |
|
| 17 |
15 5 16
|
smff |
|
| 18 |
17
|
ffund |
|
| 19 |
1 2 9
|
smff |
|
| 20 |
19
|
ffund |
|
| 21 |
18 20
|
funcofd |
|
| 22 |
17
|
frnd |
|
| 23 |
21 22
|
fssd |
|
| 24 |
|
cnvco |
|
| 25 |
24
|
imaeq1i |
|
| 26 |
23
|
adantr |
|
| 27 |
|
rexr |
|
| 28 |
27
|
adantl |
|
| 29 |
26 28
|
preimaioomnf |
|
| 30 |
|
imaco |
|
| 31 |
30
|
a1i |
|
| 32 |
25 29 31
|
3eqtr3a |
|
| 33 |
17
|
adantr |
|
| 34 |
33 28
|
preimaioomnf |
|
| 35 |
15
|
adantr |
|
| 36 |
5
|
adantr |
|
| 37 |
|
simpr |
|
| 38 |
35 36 16 37
|
smfpreimalt |
|
| 39 |
34 38
|
eqeltrd |
|
| 40 |
15
|
elexd |
|
| 41 |
5
|
dmexd |
|
| 42 |
|
elrest |
|
| 43 |
40 41 42
|
syl2anc |
|
| 44 |
43
|
adantr |
|
| 45 |
39 44
|
mpbid |
|
| 46 |
|
imaeq2 |
|
| 47 |
46
|
3ad2ant3 |
|
| 48 |
|
ovexd |
|
| 49 |
2
|
elexd |
|
| 50 |
|
cnvexg |
|
| 51 |
|
imaexg |
|
| 52 |
49 50 51
|
3syl |
|
| 53 |
52
|
adantr |
|
| 54 |
1
|
adantr |
|
| 55 |
2
|
adantr |
|
| 56 |
|
simpr |
|
| 57 |
|
eqid |
|
| 58 |
54 55 9 3 4 56 57
|
smfpimbor1 |
|
| 59 |
|
eqid |
|
| 60 |
48 53 58 59
|
elrestd |
|
| 61 |
|
inpreima |
|
| 62 |
20 61
|
syl |
|
| 63 |
62
|
adantr |
|
| 64 |
2
|
dmexd |
|
| 65 |
|
restabs |
|
| 66 |
1 8 64 65
|
syl3anc |
|
| 67 |
66
|
eqcomd |
|
| 68 |
67
|
adantr |
|
| 69 |
60 63 68
|
3eltr4d |
|
| 70 |
69
|
3adant3 |
|
| 71 |
47 70
|
eqeltrd |
|
| 72 |
71
|
3exp |
|
| 73 |
72
|
adantr |
|
| 74 |
73
|
rexlimdv |
|
| 75 |
45 74
|
mpd |
|
| 76 |
32 75
|
eqeltrd |
|
| 77 |
6 1 11 23 76
|
issmfd |
|