Metamath Proof Explorer


Theorem smprngopr

Description: A simple ring (one whose only ideals are 0 and R ) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses smprngpr.1 G=1stR
smprngpr.2 H=2ndR
smprngpr.3 X=ranG
smprngpr.4 Z=GIdG
smprngpr.5 U=GIdH
Assertion smprngopr RRingOpsUZIdlR=ZXRPrRing

Proof

Step Hyp Ref Expression
1 smprngpr.1 G=1stR
2 smprngpr.2 H=2ndR
3 smprngpr.3 X=ranG
4 smprngpr.4 Z=GIdG
5 smprngpr.5 U=GIdH
6 simp1 RRingOpsUZIdlR=ZXRRingOps
7 1 4 0idl RRingOpsZIdlR
8 7 3ad2ant1 RRingOpsUZIdlR=ZXZIdlR
9 1 2 3 4 5 0rngo RRingOpsZ=UX=Z
10 eqcom U=ZZ=U
11 eqcom Z=XX=Z
12 9 10 11 3bitr4g RRingOpsU=ZZ=X
13 12 necon3bid RRingOpsUZZX
14 13 biimpa RRingOpsUZZX
15 14 3adant3 RRingOpsUZIdlR=ZXZX
16 df-pr ZX=ZX
17 16 eqeq2i IdlR=ZXIdlR=ZX
18 eleq2 IdlR=ZXiIdlRiZX
19 eleq2 IdlR=ZXjIdlRjZX
20 18 19 anbi12d IdlR=ZXiIdlRjIdlRiZXjZX
21 elun iZXiZiX
22 velsn iZi=Z
23 velsn iXi=X
24 22 23 orbi12i iZiXi=Zi=X
25 21 24 bitri iZXi=Zi=X
26 elun jZXjZjX
27 velsn jZj=Z
28 velsn jXj=X
29 27 28 orbi12i jZjXj=Zj=X
30 26 29 bitri jZXj=Zj=X
31 25 30 anbi12i iZXjZXi=Zi=Xj=Zj=X
32 20 31 bitrdi IdlR=ZXiIdlRjIdlRi=Zi=Xj=Zj=X
33 17 32 sylbi IdlR=ZXiIdlRjIdlRi=Zi=Xj=Zj=X
34 33 3ad2ant3 RRingOpsUZIdlR=ZXiIdlRjIdlRi=Zi=Xj=Zj=X
35 eqimss i=ZiZ
36 35 orcd i=ZiZjZ
37 36 adantr i=Zj=ZiZjZ
38 37 a1d i=Zj=ZxiyjxHyZiZjZ
39 38 a1i RRingOpsUZi=Zj=ZxiyjxHyZiZjZ
40 eqimss j=ZjZ
41 40 olcd j=ZiZjZ
42 41 adantl i=Xj=ZiZjZ
43 42 a1d i=Xj=ZxiyjxHyZiZjZ
44 43 a1i RRingOpsUZi=Xj=ZxiyjxHyZiZjZ
45 36 adantr i=Zj=XiZjZ
46 45 a1d i=Zj=XxiyjxHyZiZjZ
47 46 a1i RRingOpsUZi=Zj=XxiyjxHyZiZjZ
48 1 rneqi ranG=ran1stR
49 3 48 eqtri X=ran1stR
50 49 2 5 rngo1cl RRingOpsUX
51 50 adantr RRingOpsUZUX
52 2 49 5 rngolidm RRingOpsUXUHU=U
53 50 52 mpdan RRingOpsUHU=U
54 53 eleq1d RRingOpsUHUZUZ
55 5 fvexi UV
56 55 elsn UZU=Z
57 54 56 bitrdi RRingOpsUHUZU=Z
58 57 necon3bbid RRingOps¬UHUZUZ
59 58 biimpar RRingOpsUZ¬UHUZ
60 oveq1 x=UxHy=UHy
61 60 eleq1d x=UxHyZUHyZ
62 61 notbid x=U¬xHyZ¬UHyZ
63 oveq2 y=UUHy=UHU
64 63 eleq1d y=UUHyZUHUZ
65 64 notbid y=U¬UHyZ¬UHUZ
66 62 65 rspc2ev UXUX¬UHUZxXyX¬xHyZ
67 51 51 59 66 syl3anc RRingOpsUZxXyX¬xHyZ
68 rexnal2 xXyX¬xHyZ¬xXyXxHyZ
69 67 68 sylib RRingOpsUZ¬xXyXxHyZ
70 69 pm2.21d RRingOpsUZxXyXxHyZiZjZ
71 raleq i=XxiyjxHyZxXyjxHyZ
72 raleq j=XyjxHyZyXxHyZ
73 72 ralbidv j=XxXyjxHyZxXyXxHyZ
74 71 73 sylan9bb i=Xj=XxiyjxHyZxXyXxHyZ
75 74 imbi1d i=Xj=XxiyjxHyZiZjZxXyXxHyZiZjZ
76 70 75 syl5ibrcom RRingOpsUZi=Xj=XxiyjxHyZiZjZ
77 39 44 47 76 ccased RRingOpsUZi=Zi=Xj=Zj=XxiyjxHyZiZjZ
78 77 3adant3 RRingOpsUZIdlR=ZXi=Zi=Xj=Zj=XxiyjxHyZiZjZ
79 34 78 sylbid RRingOpsUZIdlR=ZXiIdlRjIdlRxiyjxHyZiZjZ
80 79 ralrimivv RRingOpsUZIdlR=ZXiIdlRjIdlRxiyjxHyZiZjZ
81 1 2 3 ispridl RRingOpsZPrIdlRZIdlRZXiIdlRjIdlRxiyjxHyZiZjZ
82 81 3ad2ant1 RRingOpsUZIdlR=ZXZPrIdlRZIdlRZXiIdlRjIdlRxiyjxHyZiZjZ
83 8 15 80 82 mpbir3and RRingOpsUZIdlR=ZXZPrIdlR
84 1 4 isprrngo RPrRingRRingOpsZPrIdlR
85 6 83 84 sylanbrc RRingOpsUZIdlR=ZXRPrRing