Step |
Hyp |
Ref |
Expression |
1 |
|
smprngpr.1 |
|
2 |
|
smprngpr.2 |
|
3 |
|
smprngpr.3 |
|
4 |
|
smprngpr.4 |
|
5 |
|
smprngpr.5 |
|
6 |
|
simp1 |
|
7 |
1 4
|
0idl |
|
8 |
7
|
3ad2ant1 |
|
9 |
1 2 3 4 5
|
0rngo |
|
10 |
|
eqcom |
|
11 |
|
eqcom |
|
12 |
9 10 11
|
3bitr4g |
|
13 |
12
|
necon3bid |
|
14 |
13
|
biimpa |
|
15 |
14
|
3adant3 |
|
16 |
|
df-pr |
|
17 |
16
|
eqeq2i |
|
18 |
|
eleq2 |
|
19 |
|
eleq2 |
|
20 |
18 19
|
anbi12d |
|
21 |
|
elun |
|
22 |
|
velsn |
|
23 |
|
velsn |
|
24 |
22 23
|
orbi12i |
|
25 |
21 24
|
bitri |
|
26 |
|
elun |
|
27 |
|
velsn |
|
28 |
|
velsn |
|
29 |
27 28
|
orbi12i |
|
30 |
26 29
|
bitri |
|
31 |
25 30
|
anbi12i |
|
32 |
20 31
|
bitrdi |
|
33 |
17 32
|
sylbi |
|
34 |
33
|
3ad2ant3 |
|
35 |
|
eqimss |
|
36 |
35
|
orcd |
|
37 |
36
|
adantr |
|
38 |
37
|
a1d |
|
39 |
38
|
a1i |
|
40 |
|
eqimss |
|
41 |
40
|
olcd |
|
42 |
41
|
adantl |
|
43 |
42
|
a1d |
|
44 |
43
|
a1i |
|
45 |
36
|
adantr |
|
46 |
45
|
a1d |
|
47 |
46
|
a1i |
|
48 |
1
|
rneqi |
|
49 |
3 48
|
eqtri |
|
50 |
49 2 5
|
rngo1cl |
|
51 |
50
|
adantr |
|
52 |
2 49 5
|
rngolidm |
|
53 |
50 52
|
mpdan |
|
54 |
53
|
eleq1d |
|
55 |
5
|
fvexi |
|
56 |
55
|
elsn |
|
57 |
54 56
|
bitrdi |
|
58 |
57
|
necon3bbid |
|
59 |
58
|
biimpar |
|
60 |
|
oveq1 |
|
61 |
60
|
eleq1d |
|
62 |
61
|
notbid |
|
63 |
|
oveq2 |
|
64 |
63
|
eleq1d |
|
65 |
64
|
notbid |
|
66 |
62 65
|
rspc2ev |
|
67 |
51 51 59 66
|
syl3anc |
|
68 |
|
rexnal2 |
|
69 |
67 68
|
sylib |
|
70 |
69
|
pm2.21d |
|
71 |
|
raleq |
|
72 |
|
raleq |
|
73 |
72
|
ralbidv |
|
74 |
71 73
|
sylan9bb |
|
75 |
74
|
imbi1d |
|
76 |
70 75
|
syl5ibrcom |
|
77 |
39 44 47 76
|
ccased |
|
78 |
77
|
3adant3 |
|
79 |
34 78
|
sylbid |
|
80 |
79
|
ralrimivv |
|
81 |
1 2 3
|
ispridl |
|
82 |
81
|
3ad2ant1 |
|
83 |
8 15 80 82
|
mpbir3and |
|
84 |
1 4
|
isprrngo |
|
85 |
6 83 84
|
sylanbrc |
|