Metamath Proof Explorer


Theorem snlindsntor

Description: A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra) ): "An element m of a module M over a ring R is called atorsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., ( r .x. m ) = 0 . In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in Lang p. 147 states that "An element x of [a module] E [over a ring R] is called atorsion element if there exists a e. R , a =/= 0 , such that a .x. x = 0 . This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019) (Revised by AV, 27-Apr-2019)

Ref Expression
Hypotheses snlindsntor.b B=BaseM
snlindsntor.r R=ScalarM
snlindsntor.s S=BaseR
snlindsntor.0 0˙=0R
snlindsntor.z Z=0M
snlindsntor.t ·˙=M
Assertion snlindsntor MLModXBsS0˙s·˙XZXlinIndSM

Proof

Step Hyp Ref Expression
1 snlindsntor.b B=BaseM
2 snlindsntor.r R=ScalarM
3 snlindsntor.s S=BaseR
4 snlindsntor.0 0˙=0R
5 snlindsntor.z Z=0M
6 snlindsntor.t ·˙=M
7 df-ne s·˙XZ¬s·˙X=Z
8 7 ralbii sS0˙s·˙XZsS0˙¬s·˙X=Z
9 raldifsni sS0˙¬s·˙X=ZsSs·˙X=Zs=0˙
10 8 9 bitri sS0˙s·˙XZsSs·˙X=Zs=0˙
11 simpl MLModXBMLMod
12 11 adantr MLModXBsSs·˙X=Zs=0˙MLMod
13 12 adantr MLModXBsSs·˙X=Zs=0˙fSXMLMod
14 2 fveq2i BaseR=BaseScalarM
15 3 14 eqtri S=BaseScalarM
16 15 oveq1i SX=BaseScalarMX
17 16 eleq2i fSXfBaseScalarMX
18 17 biimpi fSXfBaseScalarMX
19 18 adantl MLModXBsSs·˙X=Zs=0˙fSXfBaseScalarMX
20 snelpwi XBaseMX𝒫BaseM
21 20 1 eleq2s XBX𝒫BaseM
22 21 ad3antlr MLModXBsSs·˙X=Zs=0˙fSXX𝒫BaseM
23 lincval MLModfBaseScalarMXX𝒫BaseMflinCMX=MxXfxMx
24 13 19 22 23 syl3anc MLModXBsSs·˙X=Zs=0˙fSXflinCMX=MxXfxMx
25 24 eqeq1d MLModXBsSs·˙X=Zs=0˙fSXflinCMX=ZMxXfxMx=Z
26 25 anbi2d MLModXBsSs·˙X=Zs=0˙fSXfinSupp0˙fflinCMX=ZfinSupp0˙fMxXfxMx=Z
27 lmodgrp MLModMGrp
28 27 grpmndd MLModMMnd
29 28 ad3antrrr MLModXBsSs·˙X=Zs=0˙fSXMMnd
30 simpllr MLModXBsSs·˙X=Zs=0˙fSXXB
31 elmapi fSXf:XS
32 12 adantl f:XSMLModXBsSs·˙X=Zs=0˙MLMod
33 snidg XBXX
34 33 adantl MLModXBXX
35 34 adantr MLModXBsSs·˙X=Zs=0˙XX
36 ffvelcdm f:XSXXfXS
37 35 36 sylan2 f:XSMLModXBsSs·˙X=Zs=0˙fXS
38 simprlr f:XSMLModXBsSs·˙X=Zs=0˙XB
39 eqid M=M
40 1 2 39 3 lmodvscl MLModfXSXBfXMXB
41 32 37 38 40 syl3anc f:XSMLModXBsSs·˙X=Zs=0˙fXMXB
42 41 expcom MLModXBsSs·˙X=Zs=0˙f:XSfXMXB
43 31 42 syl5com fSXMLModXBsSs·˙X=Zs=0˙fXMXB
44 43 impcom MLModXBsSs·˙X=Zs=0˙fSXfXMXB
45 fveq2 x=Xfx=fX
46 id x=Xx=X
47 45 46 oveq12d x=XfxMx=fXMX
48 1 47 gsumsn MMndXBfXMXBMxXfxMx=fXMX
49 29 30 44 48 syl3anc MLModXBsSs·˙X=Zs=0˙fSXMxXfxMx=fXMX
50 49 eqeq1d MLModXBsSs·˙X=Zs=0˙fSXMxXfxMx=ZfXMX=Z
51 33 36 sylan2 f:XSXBfXS
52 51 expcom XBf:XSfXS
53 52 adantl MLModXBf:XSfXS
54 6 oveqi fX·˙X=fXMX
55 54 eqeq1i fX·˙X=ZfXMX=Z
56 oveq1 s=fXs·˙X=fX·˙X
57 56 eqeq1d s=fXs·˙X=ZfX·˙X=Z
58 eqeq1 s=fXs=0˙fX=0˙
59 57 58 imbi12d s=fXs·˙X=Zs=0˙fX·˙X=ZfX=0˙
60 59 rspcva fXSsSs·˙X=Zs=0˙fX·˙X=ZfX=0˙
61 55 60 biimtrrid fXSsSs·˙X=Zs=0˙fXMX=ZfX=0˙
62 61 ex fXSsSs·˙X=Zs=0˙fXMX=ZfX=0˙
63 31 53 62 syl56 MLModXBfSXsSs·˙X=Zs=0˙fXMX=ZfX=0˙
64 63 com23 MLModXBsSs·˙X=Zs=0˙fSXfXMX=ZfX=0˙
65 64 imp31 MLModXBsSs·˙X=Zs=0˙fSXfXMX=ZfX=0˙
66 50 65 sylbid MLModXBsSs·˙X=Zs=0˙fSXMxXfxMx=ZfX=0˙
67 66 adantld MLModXBsSs·˙X=Zs=0˙fSXfinSupp0˙fMxXfxMx=ZfX=0˙
68 26 67 sylbid MLModXBsSs·˙X=Zs=0˙fSXfinSupp0˙fflinCMX=ZfX=0˙
69 68 ralrimiva MLModXBsSs·˙X=Zs=0˙fSXfinSupp0˙fflinCMX=ZfX=0˙
70 69 ex MLModXBsSs·˙X=Zs=0˙fSXfinSupp0˙fflinCMX=ZfX=0˙
71 impexp finSupp0˙fflinCMX=ZfX=0˙finSupp0˙fflinCMX=ZfX=0˙
72 31 adantl MLModXBfSXf:XS
73 snfi XFin
74 73 a1i MLModXBfSXXFin
75 4 fvexi 0˙V
76 75 a1i MLModXBfSX0˙V
77 72 74 76 fdmfifsupp MLModXBfSXfinSupp0˙f
78 pm2.27 finSupp0˙ffinSupp0˙fflinCMX=ZfX=0˙flinCMX=ZfX=0˙
79 77 78 syl MLModXBfSXfinSupp0˙fflinCMX=ZfX=0˙flinCMX=ZfX=0˙
80 71 79 biimtrid MLModXBfSXfinSupp0˙fflinCMX=ZfX=0˙flinCMX=ZfX=0˙
81 80 ralimdva MLModXBfSXfinSupp0˙fflinCMX=ZfX=0˙fSXflinCMX=ZfX=0˙
82 1 2 3 4 5 6 snlindsntorlem MLModXBfSXflinCMX=ZfX=0˙sSs·˙X=Zs=0˙
83 81 82 syld MLModXBfSXfinSupp0˙fflinCMX=ZfX=0˙sSs·˙X=Zs=0˙
84 70 83 impbid MLModXBsSs·˙X=Zs=0˙fSXfinSupp0˙fflinCMX=ZfX=0˙
85 fveqeq2 y=Xfy=0˙fX=0˙
86 85 ralsng XByXfy=0˙fX=0˙
87 86 adantl MLModXByXfy=0˙fX=0˙
88 87 bicomd MLModXBfX=0˙yXfy=0˙
89 88 imbi2d MLModXBfinSupp0˙fflinCMX=ZfX=0˙finSupp0˙fflinCMX=ZyXfy=0˙
90 89 ralbidv MLModXBfSXfinSupp0˙fflinCMX=ZfX=0˙fSXfinSupp0˙fflinCMX=ZyXfy=0˙
91 snelpwi XBX𝒫B
92 91 adantl MLModXBX𝒫B
93 92 biantrurd MLModXBfSXfinSupp0˙fflinCMX=ZyXfy=0˙X𝒫BfSXfinSupp0˙fflinCMX=ZyXfy=0˙
94 84 90 93 3bitrd MLModXBsSs·˙X=Zs=0˙X𝒫BfSXfinSupp0˙fflinCMX=ZyXfy=0˙
95 10 94 bitrid MLModXBsS0˙s·˙XZX𝒫BfSXfinSupp0˙fflinCMX=ZyXfy=0˙
96 snex XV
97 1 5 2 3 4 islininds XVMLModXlinIndSMX𝒫BfSXfinSupp0˙fflinCMX=ZyXfy=0˙
98 96 11 97 sylancr MLModXBXlinIndSMX𝒫BfSXfinSupp0˙fflinCMX=ZyXfy=0˙
99 95 98 bitr4d MLModXBsS0˙s·˙XZXlinIndSM