Metamath Proof Explorer


Theorem srhmsubcALTV

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses srhmsubcALTV.s rSrRing
srhmsubcALTV.c C=US
srhmsubcALTV.j J=rC,sCrRingHoms
Assertion srhmsubcALTV UVJSubcatRingCatALTVU

Proof

Step Hyp Ref Expression
1 srhmsubcALTV.s rSrRing
2 srhmsubcALTV.c C=US
3 srhmsubcALTV.j J=rC,sCrRingHoms
4 eleq1w r=xrRingxRing
5 4 1 vtoclri xSxRing
6 5 ssriv SRing
7 sslin SRingUSURing
8 6 7 mp1i UVUSURing
9 2 8 eqsstrid UVCURing
10 ssid xRingHomyxRingHomy
11 eqid RingCatALTVU=RingCatALTVU
12 eqid BaseRingCatALTVU=BaseRingCatALTVU
13 simpl UVxCyCUV
14 eqid HomRingCatALTVU=HomRingCatALTVU
15 1 2 srhmsubcALTVlem1 UVxCxBaseRingCatALTVU
16 15 adantrr UVxCyCxBaseRingCatALTVU
17 1 2 srhmsubcALTVlem1 UVyCyBaseRingCatALTVU
18 17 adantrl UVxCyCyBaseRingCatALTVU
19 11 12 13 14 16 18 ringchomALTV UVxCyCxHomRingCatALTVUy=xRingHomy
20 10 19 sseqtrrid UVxCyCxRingHomyxHomRingCatALTVUy
21 3 a1i UVxCyCJ=rC,sCrRingHoms
22 oveq12 r=xs=yrRingHoms=xRingHomy
23 22 adantl UVxCyCr=xs=yrRingHoms=xRingHomy
24 simprl UVxCyCxC
25 simprr UVxCyCyC
26 ovexd UVxCyCxRingHomyV
27 21 23 24 25 26 ovmpod UVxCyCxJy=xRingHomy
28 eqid Hom𝑓RingCatALTVU=Hom𝑓RingCatALTVU
29 28 12 14 16 18 homfval UVxCyCxHom𝑓RingCatALTVUy=xHomRingCatALTVUy
30 20 27 29 3sstr4d UVxCyCxJyxHom𝑓RingCatALTVUy
31 30 ralrimivva UVxCyCxJyxHom𝑓RingCatALTVUy
32 ovex rRingHomsV
33 3 32 fnmpoi JFnC×C
34 33 a1i UVJFnC×C
35 28 12 homffn Hom𝑓RingCatALTVUFnBaseRingCatALTVU×BaseRingCatALTVU
36 id UVUV
37 11 12 36 ringcbasALTV UVBaseRingCatALTVU=URing
38 37 eqcomd UVURing=BaseRingCatALTVU
39 38 sqxpeqd UVURing×URing=BaseRingCatALTVU×BaseRingCatALTVU
40 39 fneq2d UVHom𝑓RingCatALTVUFnURing×URingHom𝑓RingCatALTVUFnBaseRingCatALTVU×BaseRingCatALTVU
41 35 40 mpbiri UVHom𝑓RingCatALTVUFnURing×URing
42 inex1g UVURingV
43 34 41 42 isssc UVJcatHom𝑓RingCatALTVUCURingxCyCxJyxHom𝑓RingCatALTVUy
44 9 31 43 mpbir2and UVJcatHom𝑓RingCatALTVU
45 2 elin2 xCxUxS
46 5 adantl xUxSxRing
47 45 46 sylbi xCxRing
48 47 adantl UVxCxRing
49 eqid Basex=Basex
50 49 idrhm xRingIBasexxRingHomx
51 48 50 syl UVxCIBasexxRingHomx
52 eqid IdRingCatALTVU=IdRingCatALTVU
53 simpl UVxCUV
54 11 12 52 53 15 49 ringcidALTV UVxCIdRingCatALTVUx=IBasex
55 3 a1i UVxCJ=rC,sCrRingHoms
56 oveq12 r=xs=xrRingHoms=xRingHomx
57 56 adantl UVxCr=xs=xrRingHoms=xRingHomx
58 simpr UVxCxC
59 ovexd UVxCxRingHomxV
60 55 57 58 58 59 ovmpod UVxCxJx=xRingHomx
61 51 54 60 3eltr4d UVxCIdRingCatALTVUxxJx
62 eqid compRingCatALTVU=compRingCatALTVU
63 11 ringccatALTV UVRingCatALTVUCat
64 63 ad3antrrr UVxCyCzCfxJygyJzRingCatALTVUCat
65 15 adantr UVxCyCzCxBaseRingCatALTVU
66 65 adantr UVxCyCzCfxJygyJzxBaseRingCatALTVU
67 17 ad2ant2r UVxCyCzCyBaseRingCatALTVU
68 67 adantr UVxCyCzCfxJygyJzyBaseRingCatALTVU
69 1 2 srhmsubcALTVlem1 UVzCzBaseRingCatALTVU
70 69 ad2ant2rl UVxCyCzCzBaseRingCatALTVU
71 70 adantr UVxCyCzCfxJygyJzzBaseRingCatALTVU
72 53 adantr UVxCyCzCUV
73 simpl yCzCyC
74 58 73 anim12i UVxCyCzCxCyC
75 72 74 jca UVxCyCzCUVxCyC
76 1 2 3 srhmsubcALTVlem2 UVxCyCxJy=xHomRingCatALTVUy
77 75 76 syl UVxCyCzCxJy=xHomRingCatALTVUy
78 77 eleq2d UVxCyCzCfxJyfxHomRingCatALTVUy
79 78 biimpcd fxJyUVxCyCzCfxHomRingCatALTVUy
80 79 adantr fxJygyJzUVxCyCzCfxHomRingCatALTVUy
81 80 impcom UVxCyCzCfxJygyJzfxHomRingCatALTVUy
82 1 2 3 srhmsubcALTVlem2 UVyCzCyJz=yHomRingCatALTVUz
83 82 adantlr UVxCyCzCyJz=yHomRingCatALTVUz
84 83 eleq2d UVxCyCzCgyJzgyHomRingCatALTVUz
85 84 biimpd UVxCyCzCgyJzgyHomRingCatALTVUz
86 85 adantld UVxCyCzCfxJygyJzgyHomRingCatALTVUz
87 86 imp UVxCyCzCfxJygyJzgyHomRingCatALTVUz
88 12 14 62 64 66 68 71 81 87 catcocl UVxCyCzCfxJygyJzgxycompRingCatALTVUzfxHomRingCatALTVUz
89 11 12 72 14 65 70 ringchomALTV UVxCyCzCxHomRingCatALTVUz=xRingHomz
90 89 eqcomd UVxCyCzCxRingHomz=xHomRingCatALTVUz
91 90 adantr UVxCyCzCfxJygyJzxRingHomz=xHomRingCatALTVUz
92 88 91 eleqtrrd UVxCyCzCfxJygyJzgxycompRingCatALTVUzfxRingHomz
93 3 a1i UVxCyCzCJ=rC,sCrRingHoms
94 oveq12 r=xs=zrRingHoms=xRingHomz
95 94 adantl UVxCyCzCr=xs=zrRingHoms=xRingHomz
96 58 adantr UVxCyCzCxC
97 simprr UVxCyCzCzC
98 ovexd UVxCyCzCxRingHomzV
99 93 95 96 97 98 ovmpod UVxCyCzCxJz=xRingHomz
100 99 adantr UVxCyCzCfxJygyJzxJz=xRingHomz
101 92 100 eleqtrrd UVxCyCzCfxJygyJzgxycompRingCatALTVUzfxJz
102 101 ralrimivva UVxCyCzCfxJygyJzgxycompRingCatALTVUzfxJz
103 102 ralrimivva UVxCyCzCfxJygyJzgxycompRingCatALTVUzfxJz
104 61 103 jca UVxCIdRingCatALTVUxxJxyCzCfxJygyJzgxycompRingCatALTVUzfxJz
105 104 ralrimiva UVxCIdRingCatALTVUxxJxyCzCfxJygyJzgxycompRingCatALTVUzfxJz
106 28 52 62 63 34 issubc2 UVJSubcatRingCatALTVUJcatHom𝑓RingCatALTVUxCIdRingCatALTVUxxJxyCzCfxJygyJzgxycompRingCatALTVUzfxJz
107 44 105 106 mpbir2and UVJSubcatRingCatALTVU