Metamath Proof Explorer


Theorem trgcopy

Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of Schwabhauser p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020)

Ref Expression
Hypotheses trgcopy.p P=BaseG
trgcopy.m -˙=distG
trgcopy.i I=ItvG
trgcopy.l L=Line𝒢G
trgcopy.k K=hl𝒢G
trgcopy.g φG𝒢Tarski
trgcopy.a φAP
trgcopy.b φBP
trgcopy.c φCP
trgcopy.d φDP
trgcopy.e φEP
trgcopy.f φFP
trgcopy.1 φ¬ABLCB=C
trgcopy.2 φ¬DELFE=F
trgcopy.3 φA-˙B=D-˙E
Assertion trgcopy φfP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF

Proof

Step Hyp Ref Expression
1 trgcopy.p P=BaseG
2 trgcopy.m -˙=distG
3 trgcopy.i I=ItvG
4 trgcopy.l L=Line𝒢G
5 trgcopy.k K=hl𝒢G
6 trgcopy.g φG𝒢Tarski
7 trgcopy.a φAP
8 trgcopy.b φBP
9 trgcopy.c φCP
10 trgcopy.d φDP
11 trgcopy.e φEP
12 trgcopy.f φFP
13 trgcopy.1 φ¬ABLCB=C
14 trgcopy.2 φ¬DELFE=F
15 trgcopy.3 φA-˙B=D-˙E
16 eqid 𝒢G=𝒢G
17 6 ad2antrr φxALBCLx𝒢GALBG𝒢Tarski
18 17 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩G𝒢Tarski
19 18 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFG𝒢Tarski
20 19 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CG𝒢Tarski
21 7 ad2antrr φxALBCLx𝒢GALBAP
22 21 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩AP
23 22 ad3antrrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CAP
24 8 ad2antrr φxALBCLx𝒢GALBBP
25 24 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩BP
26 25 ad3antrrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CBP
27 9 ad6antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFCP
28 27 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CCP
29 10 ad2antrr φxALBCLx𝒢GALBDP
30 29 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩DP
31 30 ad3antrrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CDP
32 11 ad2antrr φxALBCLx𝒢GALBEP
33 32 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩EP
34 33 ad3antrrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CEP
35 simprl φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfP
36 15 ad2antrr φxALBCLx𝒢GALBA-˙B=D-˙E
37 36 ad5antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CA-˙B=D-˙E
38 1 4 3 6 8 9 7 13 ncoltgdim2 φGDim𝒢2
39 38 ad4antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩GDim𝒢2
40 39 ad3antrrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CGDim𝒢2
41 1 3 4 6 7 8 9 13 ncolne1 φAB
42 1 3 4 6 7 8 41 tgelrnln φALBranL
43 42 ad2antrr φxALBCLx𝒢GALBALBranL
44 simplr φxALBCLx𝒢GALBxALB
45 1 4 3 17 43 44 tglnpt φxALBCLx𝒢GALBxP
46 45 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩xP
47 46 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFxP
48 47 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CxP
49 simplr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩yP
50 49 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFyP
51 50 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CyP
52 44 ad5antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CxALB
53 41 ad7antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CAB
54 1 3 4 20 23 26 53 tglinecom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CALB=BLA
55 52 54 eleqtrd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CxBLA
56 simp-6r φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CCLx𝒢GALB
57 4 20 56 perpln1 φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CCLxranL
58 43 ad5antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CALBranL
59 1 2 3 4 20 57 58 56 perpcom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CALB𝒢GCLx
60 1 4 3 6 8 9 7 13 ncolrot2 φ¬CALBA=B
61 ioran ¬CALBA=B¬CALB¬A=B
62 60 61 sylib φ¬CALB¬A=B
63 62 simpld φ¬CALB
64 63 ad2antrr φxALBCLx𝒢GALB¬CALB
65 nelne2 xALB¬CALBxC
66 44 64 65 syl2anc φxALBCLx𝒢GALBxC
67 66 ad4antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFxC
68 67 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CxC
69 68 necomd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CCx
70 1 3 4 20 28 48 69 tglinecom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CCLx=xLC
71 59 54 70 3brtr3d φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CBLA𝒢GxLC
72 1 2 3 4 20 26 23 55 28 71 perprag φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“BxC”⟩𝒢G
73 1 3 4 6 10 11 12 14 ncolne1 φDE
74 73 necomd φED
75 74 ad7antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CED
76 73 ad4antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩DE
77 76 neneqd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩¬D=E
78 44 orcd φxALBCLx𝒢GALBxALBA=B
79 1 4 3 17 21 24 45 78 colrot2 φxALBCLx𝒢GALBBxLAx=A
80 1 4 3 17 45 21 24 79 colcom φxALBCLx𝒢GALBBALxA=x
81 80 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩BALxA=x
82 simpr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩⟨“ABx”⟩𝒢G⟨“DEy”⟩
83 1 4 3 18 22 25 46 16 30 33 49 81 82 lnxfr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩EDLyD=y
84 1 4 3 18 30 49 33 83 colrot2 φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩yELDE=D
85 1 4 3 18 33 30 49 84 colcom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩yDLED=E
86 85 orcomd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩D=EyDLE
87 86 ord φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩¬D=EyDLE
88 77 87 mpd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩yDLE
89 88 ad3antrrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CyDLE
90 1 3 4 20 34 31 51 75 89 lncom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CyELD
91 simprrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cy-˙f=x-˙C
92 91 eqcomd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cx-˙C=y-˙f
93 1 2 3 20 48 28 51 35 92 68 tgcgrneq φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cyf
94 1 3 4 20 51 35 93 tgelrnln φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CyLfranL
95 1 3 4 20 34 31 75 tgelrnln φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CELDranL
96 simpllr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CqP
97 simplr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFqP
98 simprl φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFDLE𝒢GqLy
99 4 19 98 perpln2 φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFqLyranL
100 1 3 4 19 97 50 99 tglnne φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFqy
101 100 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cqy
102 101 necomd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cyq
103 1 3 4 20 51 96 102 tgelrnln φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CyLqranL
104 98 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CDLE𝒢GqLy
105 1 3 4 20 34 31 75 tglinecom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CELD=DLE
106 1 3 4 20 51 96 102 tglinecom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CyLq=qLy
107 104 105 106 3brtr4d φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CELD𝒢GyLq
108 1 2 3 4 20 95 103 107 perpcom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CyLq𝒢GELD
109 simprrl φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfKyq
110 1 3 5 35 96 51 20 4 109 hlln φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfqLy
111 1 3 4 20 51 96 35 102 110 lncom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfyLq
112 111 orcd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfyLqy=q
113 1 2 3 4 20 51 96 35 108 112 93 colperp φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CyLf𝒢GELD
114 1 2 3 4 20 94 95 113 perpcom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CELD𝒢GyLf
115 1 2 3 4 20 34 31 90 35 114 perprag φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“Eyf”⟩𝒢G
116 82 ad3antrrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“ABx”⟩𝒢G⟨“DEy”⟩
117 1 2 3 16 20 23 26 48 31 34 51 116 cgr3simp2 φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CB-˙x=E-˙y
118 1 2 3 20 40 26 48 28 34 51 35 72 115 117 92 hypcgr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CB-˙C=E-˙f
119 eqid pInv𝒢G=pInv𝒢G
120 54 71 eqbrtrd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CALB𝒢GxLC
121 1 2 3 4 20 23 26 52 28 120 perprag φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“AxC”⟩𝒢G
122 1 2 3 4 119 20 23 48 28 121 ragcom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“CxA”⟩𝒢G
123 105 114 eqbrtrrd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CDLE𝒢GyLf
124 1 2 3 4 20 31 34 89 35 123 perprag φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“Dyf”⟩𝒢G
125 1 2 3 4 119 20 31 51 35 124 ragcom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“fyD”⟩𝒢G
126 1 2 3 20 48 28 51 35 92 tgcgrcomlr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CC-˙x=f-˙y
127 1 2 3 16 20 23 26 48 31 34 51 116 cgr3simp3 φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cx-˙A=y-˙D
128 1 2 3 20 40 28 48 23 35 51 31 122 125 126 127 hypcgr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CC-˙A=f-˙D
129 1 2 16 20 23 26 28 31 34 35 37 118 128 trgcgr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“ABC”⟩𝒢G⟨“DEf”⟩
130 1 3 4 6 10 11 73 tgelrnln φDLEranL
131 130 ad4antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩DLEranL
132 131 ad3antrrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CDLEranL
133 simpl w=kv=lw=k
134 133 eleq1d w=kv=lwPDLEkPDLE
135 simpr w=kv=lv=l
136 135 eleq1d w=kv=lvPDLElPDLE
137 134 136 anbi12d w=kv=lwPDLEvPDLEkPDLElPDLE
138 simpr w=kv=lz=jz=j
139 simpll w=kv=lz=jw=k
140 simplr w=kv=lz=jv=l
141 139 140 oveq12d w=kv=lz=jwIv=kIl
142 138 141 eleq12d w=kv=lz=jzwIvjkIl
143 142 cbvrexdva w=kv=lzDLEzwIvjDLEjkIl
144 137 143 anbi12d w=kv=lwPDLEvPDLEzDLEzwIvkPDLElPDLEjDLEjkIl
145 144 cbvopabv wv|wPDLEvPDLEzDLEzwIv=kl|kPDLElPDLEjDLEjkIl
146 20 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEG𝒢Tarski
147 28 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLECP
148 26 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEBP
149 23 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEAP
150 31 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEDP
151 34 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEEP
152 35 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEfP
153 74 ad8antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEED
154 simpr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEfDLE
155 1 3 4 146 151 150 152 153 154 lncom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEfELD
156 155 orcd φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEfELDE=D
157 1 4 3 146 151 150 152 156 colrot1 φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEEDLfD=f
158 129 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLE⟨“ABC”⟩𝒢G⟨“DEf”⟩
159 1 2 3 16 146 149 148 147 150 151 152 158 trgcgrcom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLE⟨“DEf”⟩𝒢G⟨“ABC”⟩
160 1 4 3 146 150 151 152 16 149 148 147 157 159 lnxfr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEBALCA=C
161 1 4 3 146 149 147 148 160 colrot1 φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEACLBC=B
162 1 4 3 146 147 148 149 161 colcom φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLEABLCB=C
163 13 ad8antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CfDLE¬ABLCB=C
164 162 163 pm2.65da φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C¬fDLE
165 1 3 4 20 132 51 145 5 89 35 96 164 109 hphl φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cfhp𝒢GDLEq
166 12 ad4antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩FP
167 166 ad2antrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFFP
168 167 adantr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙CFP
169 simplrr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cqhp𝒢GDLEF
170 1 3 4 20 132 35 145 96 165 168 169 hpgtr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙Cfhp𝒢GDLEF
171 129 170 jca φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF
172 1 3 5 50 47 27 19 97 2 100 67 hlcgrex φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfPfKyqy-˙f=x-˙C
173 171 172 reximddv φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEFfP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF
174 1 4 3 6 11 12 10 14 ncolrot2 φ¬FDLED=E
175 ioran ¬FDLED=E¬FDLE¬D=E
176 174 175 sylib φ¬FDLE¬D=E
177 176 simpld φ¬FDLE
178 177 ad4antr φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩¬FDLE
179 1 2 3 4 18 39 131 145 88 166 178 lnperpex φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩qPDLE𝒢GqLyqhp𝒢GDLEF
180 173 179 r19.29a φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩fP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF
181 1 4 3 17 21 24 45 16 29 32 2 80 36 lnext φxALBCLx𝒢GALByP⟨“ABx”⟩𝒢G⟨“DEy”⟩
182 180 181 r19.29a φxALBCLx𝒢GALBfP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF
183 1 2 3 4 6 42 9 63 footex φxALBCLx𝒢GALB
184 182 183 r19.29a φfP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF