| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topontop |
|
| 2 |
1
|
ad2antrr |
|
| 3 |
|
simprl |
|
| 4 |
|
toponuni |
|
| 5 |
4
|
ad2antrr |
|
| 6 |
3 5
|
sseqtrd |
|
| 7 |
|
eqid |
|
| 8 |
7
|
clscld |
|
| 9 |
2 6 8
|
syl2anc |
|
| 10 |
|
topontop |
|
| 11 |
10
|
ad2antlr |
|
| 12 |
|
simprr |
|
| 13 |
|
toponuni |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
12 14
|
sseqtrd |
|
| 16 |
|
eqid |
|
| 17 |
16
|
clscld |
|
| 18 |
11 15 17
|
syl2anc |
|
| 19 |
|
txcld |
|
| 20 |
9 18 19
|
syl2anc |
|
| 21 |
7
|
sscls |
|
| 22 |
2 6 21
|
syl2anc |
|
| 23 |
16
|
sscls |
|
| 24 |
11 15 23
|
syl2anc |
|
| 25 |
|
xpss12 |
|
| 26 |
22 24 25
|
syl2anc |
|
| 27 |
|
eqid |
|
| 28 |
27
|
clsss2 |
|
| 29 |
20 26 28
|
syl2anc |
|
| 30 |
|
relxp |
|
| 31 |
30
|
a1i |
|
| 32 |
|
opelxp |
|
| 33 |
|
eltx |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
|
eleq1 |
|
| 36 |
35
|
anbi1d |
|
| 37 |
36
|
2rexbidv |
|
| 38 |
37
|
rspccva |
|
| 39 |
2
|
ad2antrr |
|
| 40 |
6
|
ad2antrr |
|
| 41 |
|
simplrl |
|
| 42 |
|
simprll |
|
| 43 |
|
simprrl |
|
| 44 |
|
opelxp |
|
| 45 |
43 44
|
sylib |
|
| 46 |
45
|
simpld |
|
| 47 |
7
|
clsndisj |
|
| 48 |
39 40 41 42 46 47
|
syl32anc |
|
| 49 |
|
n0 |
|
| 50 |
48 49
|
sylib |
|
| 51 |
11
|
ad2antrr |
|
| 52 |
15
|
ad2antrr |
|
| 53 |
|
simplrr |
|
| 54 |
|
simprlr |
|
| 55 |
45
|
simprd |
|
| 56 |
16
|
clsndisj |
|
| 57 |
51 52 53 54 55 56
|
syl32anc |
|
| 58 |
|
n0 |
|
| 59 |
57 58
|
sylib |
|
| 60 |
|
exdistrv |
|
| 61 |
|
opelxpi |
|
| 62 |
|
inxp |
|
| 63 |
61 62
|
eleqtrrdi |
|
| 64 |
63
|
elin1d |
|
| 65 |
|
simprrr |
|
| 66 |
65
|
sselda |
|
| 67 |
64 66
|
sylan2 |
|
| 68 |
63
|
elin2d |
|
| 69 |
68
|
adantl |
|
| 70 |
|
inelcm |
|
| 71 |
67 69 70
|
syl2anc |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
exlimdvv |
|
| 74 |
60 73
|
biimtrrid |
|
| 75 |
50 59 74
|
mp2and |
|
| 76 |
75
|
expr |
|
| 77 |
76
|
rexlimdvva |
|
| 78 |
38 77
|
syl5 |
|
| 79 |
78
|
expd |
|
| 80 |
34 79
|
sylbid |
|
| 81 |
80
|
ralrimiv |
|
| 82 |
|
txtopon |
|
| 83 |
82
|
ad2antrr |
|
| 84 |
|
topontop |
|
| 85 |
83 84
|
syl |
|
| 86 |
|
xpss12 |
|
| 87 |
86
|
ad2antlr |
|
| 88 |
|
toponuni |
|
| 89 |
83 88
|
syl |
|
| 90 |
87 89
|
sseqtrd |
|
| 91 |
7
|
clsss3 |
|
| 92 |
2 6 91
|
syl2anc |
|
| 93 |
92 5
|
sseqtrrd |
|
| 94 |
93
|
sselda |
|
| 95 |
94
|
adantrr |
|
| 96 |
16
|
clsss3 |
|
| 97 |
11 15 96
|
syl2anc |
|
| 98 |
97 14
|
sseqtrrd |
|
| 99 |
98
|
sselda |
|
| 100 |
99
|
adantrl |
|
| 101 |
95 100
|
opelxpd |
|
| 102 |
101 89
|
eleqtrd |
|
| 103 |
27
|
elcls |
|
| 104 |
85 90 102 103
|
syl3anc |
|
| 105 |
81 104
|
mpbird |
|
| 106 |
105
|
ex |
|
| 107 |
32 106
|
biimtrid |
|
| 108 |
31 107
|
relssdv |
|
| 109 |
29 108
|
eqssd |
|