Metamath Proof Explorer


Theorem txcls

Description: Closure of a rectangle in the product topology. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Assertion txcls RTopOnXSTopOnYAXBYclsR×tSA×B=clsRA×clsSB

Proof

Step Hyp Ref Expression
1 topontop RTopOnXRTop
2 1 ad2antrr RTopOnXSTopOnYAXBYRTop
3 simprl RTopOnXSTopOnYAXBYAX
4 toponuni RTopOnXX=R
5 4 ad2antrr RTopOnXSTopOnYAXBYX=R
6 3 5 sseqtrd RTopOnXSTopOnYAXBYAR
7 eqid R=R
8 7 clscld RTopARclsRAClsdR
9 2 6 8 syl2anc RTopOnXSTopOnYAXBYclsRAClsdR
10 topontop STopOnYSTop
11 10 ad2antlr RTopOnXSTopOnYAXBYSTop
12 simprr RTopOnXSTopOnYAXBYBY
13 toponuni STopOnYY=S
14 13 ad2antlr RTopOnXSTopOnYAXBYY=S
15 12 14 sseqtrd RTopOnXSTopOnYAXBYBS
16 eqid S=S
17 16 clscld STopBSclsSBClsdS
18 11 15 17 syl2anc RTopOnXSTopOnYAXBYclsSBClsdS
19 txcld clsRAClsdRclsSBClsdSclsRA×clsSBClsdR×tS
20 9 18 19 syl2anc RTopOnXSTopOnYAXBYclsRA×clsSBClsdR×tS
21 7 sscls RTopARAclsRA
22 2 6 21 syl2anc RTopOnXSTopOnYAXBYAclsRA
23 16 sscls STopBSBclsSB
24 11 15 23 syl2anc RTopOnXSTopOnYAXBYBclsSB
25 xpss12 AclsRABclsSBA×BclsRA×clsSB
26 22 24 25 syl2anc RTopOnXSTopOnYAXBYA×BclsRA×clsSB
27 eqid R×tS=R×tS
28 27 clsss2 clsRA×clsSBClsdR×tSA×BclsRA×clsSBclsR×tSA×BclsRA×clsSB
29 20 26 28 syl2anc RTopOnXSTopOnYAXBYclsR×tSA×BclsRA×clsSB
30 relxp RelclsRA×clsSB
31 30 a1i RTopOnXSTopOnYAXBYRelclsRA×clsSB
32 opelxp xyclsRA×clsSBxclsRAyclsSB
33 eltx RTopOnXSTopOnYuR×tSzurRsSzr×sr×su
34 33 ad2antrr RTopOnXSTopOnYAXBYxclsRAyclsSBuR×tSzurRsSzr×sr×su
35 eleq1 z=xyzr×sxyr×s
36 35 anbi1d z=xyzr×sr×suxyr×sr×su
37 36 2rexbidv z=xyrRsSzr×sr×surRsSxyr×sr×su
38 37 rspccva zurRsSzr×sr×suxyurRsSxyr×sr×su
39 2 ad2antrr RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suRTop
40 6 ad2antrr RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suAR
41 simplrl RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suxclsRA
42 simprll RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×surR
43 simprrl RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suxyr×s
44 opelxp xyr×sxrys
45 43 44 sylib RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suxrys
46 45 simpld RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suxr
47 7 clsndisj RTopARxclsRArRxrrA
48 39 40 41 42 46 47 syl32anc RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×surA
49 n0 rAzzrA
50 48 49 sylib RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suzzrA
51 11 ad2antrr RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suSTop
52 15 ad2antrr RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suBS
53 simplrr RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suyclsSB
54 simprlr RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×susS
55 45 simprd RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suys
56 16 clsndisj STopBSyclsSBsSyssB
57 51 52 53 54 55 56 syl32anc RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×susB
58 n0 sBwwsB
59 57 58 sylib RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suwwsB
60 exdistrv zwzrAwsBzzrAwwsB
61 opelxpi zrAwsBzwrA×sB
62 inxp r×sA×B=rA×sB
63 61 62 eleqtrrdi zrAwsBzwr×sA×B
64 63 elin1d zrAwsBzwr×s
65 simprrr RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×sur×su
66 65 sselda RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suzwr×szwu
67 64 66 sylan2 RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suzrAwsBzwu
68 63 elin2d zrAwsBzwA×B
69 68 adantl RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suzrAwsBzwA×B
70 inelcm zwuzwA×BuA×B
71 67 69 70 syl2anc RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suzrAwsBuA×B
72 71 ex RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suzrAwsBuA×B
73 72 exlimdvv RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suzwzrAwsBuA×B
74 60 73 biimtrrid RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suzzrAwwsBuA×B
75 50 59 74 mp2and RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suuA×B
76 75 expr RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suuA×B
77 76 rexlimdvva RTopOnXSTopOnYAXBYxclsRAyclsSBrRsSxyr×sr×suuA×B
78 38 77 syl5 RTopOnXSTopOnYAXBYxclsRAyclsSBzurRsSzr×sr×suxyuuA×B
79 78 expd RTopOnXSTopOnYAXBYxclsRAyclsSBzurRsSzr×sr×suxyuuA×B
80 34 79 sylbid RTopOnXSTopOnYAXBYxclsRAyclsSBuR×tSxyuuA×B
81 80 ralrimiv RTopOnXSTopOnYAXBYxclsRAyclsSBuR×tSxyuuA×B
82 txtopon RTopOnXSTopOnYR×tSTopOnX×Y
83 82 ad2antrr RTopOnXSTopOnYAXBYxclsRAyclsSBR×tSTopOnX×Y
84 topontop R×tSTopOnX×YR×tSTop
85 83 84 syl RTopOnXSTopOnYAXBYxclsRAyclsSBR×tSTop
86 xpss12 AXBYA×BX×Y
87 86 ad2antlr RTopOnXSTopOnYAXBYxclsRAyclsSBA×BX×Y
88 toponuni R×tSTopOnX×YX×Y=R×tS
89 83 88 syl RTopOnXSTopOnYAXBYxclsRAyclsSBX×Y=R×tS
90 87 89 sseqtrd RTopOnXSTopOnYAXBYxclsRAyclsSBA×BR×tS
91 7 clsss3 RTopARclsRAR
92 2 6 91 syl2anc RTopOnXSTopOnYAXBYclsRAR
93 92 5 sseqtrrd RTopOnXSTopOnYAXBYclsRAX
94 93 sselda RTopOnXSTopOnYAXBYxclsRAxX
95 94 adantrr RTopOnXSTopOnYAXBYxclsRAyclsSBxX
96 16 clsss3 STopBSclsSBS
97 11 15 96 syl2anc RTopOnXSTopOnYAXBYclsSBS
98 97 14 sseqtrrd RTopOnXSTopOnYAXBYclsSBY
99 98 sselda RTopOnXSTopOnYAXBYyclsSByY
100 99 adantrl RTopOnXSTopOnYAXBYxclsRAyclsSByY
101 95 100 opelxpd RTopOnXSTopOnYAXBYxclsRAyclsSBxyX×Y
102 101 89 eleqtrd RTopOnXSTopOnYAXBYxclsRAyclsSBxyR×tS
103 27 elcls R×tSTopA×BR×tSxyR×tSxyclsR×tSA×BuR×tSxyuuA×B
104 85 90 102 103 syl3anc RTopOnXSTopOnYAXBYxclsRAyclsSBxyclsR×tSA×BuR×tSxyuuA×B
105 81 104 mpbird RTopOnXSTopOnYAXBYxclsRAyclsSBxyclsR×tSA×B
106 105 ex RTopOnXSTopOnYAXBYxclsRAyclsSBxyclsR×tSA×B
107 32 106 biimtrid RTopOnXSTopOnYAXBYxyclsRA×clsSBxyclsR×tSA×B
108 31 107 relssdv RTopOnXSTopOnYAXBYclsRA×clsSBclsR×tSA×B
109 29 108 eqssd RTopOnXSTopOnYAXBYclsR×tSA×B=clsRA×clsSB