Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl .) Lemma 565Ca of Fremlin5 p. 214. (Contributed by Mario Carneiro, 26-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uniioombl.1 | |
|
uniioombl.2 | |
||
uniioombl.3 | |
||
Assertion | uniioombl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.1 | |
|
2 | uniioombl.2 | |
|
3 | uniioombl.3 | |
|
4 | ioof | |
|
5 | inss2 | |
|
6 | rexpssxrxp | |
|
7 | 5 6 | sstri | |
8 | fss | |
|
9 | 1 7 8 | sylancl | |
10 | fco | |
|
11 | 4 9 10 | sylancr | |
12 | 11 | frnd | |
13 | sspwuni | |
|
14 | 12 13 | sylib | |
15 | elpwi | |
|
16 | 15 | ad2antrl | |
17 | simprr | |
|
18 | rphalfcl | |
|
19 | 18 | rphalfcld | |
20 | eqid | |
|
21 | 20 | ovolgelb | |
22 | 16 17 19 21 | syl2an3an | |
23 | 1 | ad3antrrr | |
24 | 2 | ad3antrrr | |
25 | eqid | |
|
26 | 17 | adantr | |
27 | 26 | adantr | |
28 | 18 | adantl | |
29 | 28 | adantr | |
30 | 29 | rphalfcld | |
31 | elmapi | |
|
32 | 31 | ad2antrl | |
33 | simprrl | |
|
34 | simprrr | |
|
35 | 23 24 3 25 27 30 32 33 20 34 | uniioombllem6 | |
36 | 22 35 | rexlimddv | |
37 | rpcn | |
|
38 | 37 | adantl | |
39 | 2cnd | |
|
40 | 2ne0 | |
|
41 | 40 | a1i | |
42 | 38 39 39 41 41 | divdiv1d | |
43 | 2t2e4 | |
|
44 | 43 | oveq2i | |
45 | 42 44 | eqtrdi | |
46 | 45 | oveq2d | |
47 | 4cn | |
|
48 | 47 | a1i | |
49 | 4ne0 | |
|
50 | 49 | a1i | |
51 | 38 48 50 | divcan2d | |
52 | 46 51 | eqtrd | |
53 | 52 | oveq2d | |
54 | 36 53 | breqtrd | |
55 | 54 | ralrimiva | |
56 | inss1 | |
|
57 | 56 | a1i | |
58 | ovolsscl | |
|
59 | 57 16 17 58 | syl3anc | |
60 | difssd | |
|
61 | ovolsscl | |
|
62 | 60 16 17 61 | syl3anc | |
63 | 59 62 | readdcld | |
64 | alrple | |
|
65 | 63 17 64 | syl2anc | |
66 | 55 65 | mpbird | |
67 | 66 | expr | |
68 | 67 | ralrimiva | |
69 | ismbl2 | |
|
70 | 14 68 69 | sylanbrc | |