Metamath Proof Explorer


Theorem uniioombl

Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl .) Lemma 565Ca of Fremlin5 p. 214. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 φF:2
uniioombl.2 φDisjx.Fx
uniioombl.3 S=seq1+absF
Assertion uniioombl φran.Fdomvol

Proof

Step Hyp Ref Expression
1 uniioombl.1 φF:2
2 uniioombl.2 φDisjx.Fx
3 uniioombl.3 S=seq1+absF
4 ioof .:*×*𝒫
5 inss2 22
6 rexpssxrxp 2*×*
7 5 6 sstri 2*×*
8 fss F:22*×*F:*×*
9 1 7 8 sylancl φF:*×*
10 fco .:*×*𝒫F:*×*.F:𝒫
11 4 9 10 sylancr φ.F:𝒫
12 11 frnd φran.F𝒫
13 sspwuni ran.F𝒫ran.F
14 12 13 sylib φran.F
15 elpwi z𝒫z
16 15 ad2antrl φz𝒫vol*zz
17 simprr φz𝒫vol*zvol*z
18 rphalfcl r+r2+
19 18 rphalfcld r+r22+
20 eqid seq1+absf=seq1+absf
21 20 ovolgelb zvol*zr22+f2zran.fsupranseq1+absf*<vol*z+r22
22 16 17 19 21 syl2an3an φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22
23 1 ad3antrrr φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22F:2
24 2 ad3antrrr φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22Disjx.Fx
25 eqid ran.F=ran.F
26 17 adantr φz𝒫vol*zr+vol*z
27 26 adantr φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22vol*z
28 18 adantl φz𝒫vol*zr+r2+
29 28 adantr φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22r2+
30 29 rphalfcld φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22r22+
31 elmapi f2f:2
32 31 ad2antrl φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22f:2
33 simprrl φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22zran.f
34 simprrr φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22supranseq1+absf*<vol*z+r22
35 23 24 3 25 27 30 32 33 20 34 uniioombllem6 φz𝒫vol*zr+f2zran.fsupranseq1+absf*<vol*z+r22vol*zran.F+vol*zran.Fvol*z+4r22
36 22 35 rexlimddv φz𝒫vol*zr+vol*zran.F+vol*zran.Fvol*z+4r22
37 rpcn r+r
38 37 adantl φz𝒫vol*zr+r
39 2cnd φz𝒫vol*zr+2
40 2ne0 20
41 40 a1i φz𝒫vol*zr+20
42 38 39 39 41 41 divdiv1d φz𝒫vol*zr+r22=r22
43 2t2e4 22=4
44 43 oveq2i r22=r4
45 42 44 eqtrdi φz𝒫vol*zr+r22=r4
46 45 oveq2d φz𝒫vol*zr+4r22=4r4
47 4cn 4
48 47 a1i φz𝒫vol*zr+4
49 4ne0 40
50 49 a1i φz𝒫vol*zr+40
51 38 48 50 divcan2d φz𝒫vol*zr+4r4=r
52 46 51 eqtrd φz𝒫vol*zr+4r22=r
53 52 oveq2d φz𝒫vol*zr+vol*z+4r22=vol*z+r
54 36 53 breqtrd φz𝒫vol*zr+vol*zran.F+vol*zran.Fvol*z+r
55 54 ralrimiva φz𝒫vol*zr+vol*zran.F+vol*zran.Fvol*z+r
56 inss1 zran.Fz
57 56 a1i φz𝒫vol*zzran.Fz
58 ovolsscl zran.Fzzvol*zvol*zran.F
59 57 16 17 58 syl3anc φz𝒫vol*zvol*zran.F
60 difssd φz𝒫vol*zzran.Fz
61 ovolsscl zran.Fzzvol*zvol*zran.F
62 60 16 17 61 syl3anc φz𝒫vol*zvol*zran.F
63 59 62 readdcld φz𝒫vol*zvol*zran.F+vol*zran.F
64 alrple vol*zran.F+vol*zran.Fvol*zvol*zran.F+vol*zran.Fvol*zr+vol*zran.F+vol*zran.Fvol*z+r
65 63 17 64 syl2anc φz𝒫vol*zvol*zran.F+vol*zran.Fvol*zr+vol*zran.F+vol*zran.Fvol*z+r
66 55 65 mpbird φz𝒫vol*zvol*zran.F+vol*zran.Fvol*z
67 66 expr φz𝒫vol*zvol*zran.F+vol*zran.Fvol*z
68 67 ralrimiva φz𝒫vol*zvol*zran.F+vol*zran.Fvol*z
69 ismbl2 ran.Fdomvolran.Fz𝒫vol*zvol*zran.F+vol*zran.Fvol*z
70 14 68 69 sylanbrc φran.Fdomvol