Metamath Proof Explorer


Theorem upixp

Description: Universal property of the indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses upixp.1 X = b A C b
upixp.2 P = w A x X x w
Assertion upixp A R B S a A F a : B C a ∃! h h : B X a A F a = P a h

Proof

Step Hyp Ref Expression
1 upixp.1 X = b A C b
2 upixp.2 P = w A x X x w
3 mptexg B S u B s A F s u V
4 3 3ad2ant2 A R B S a A F a : B C a u B s A F s u V
5 ffvelrn F a : B C a u B F a u C a
6 5 expcom u B F a : B C a F a u C a
7 6 ralimdv u B a A F a : B C a a A F a u C a
8 7 impcom a A F a : B C a u B a A F a u C a
9 8 3ad2antl3 A R B S a A F a : B C a u B a A F a u C a
10 fveq2 a = s F a = F s
11 10 fveq1d a = s F a u = F s u
12 fveq2 a = s C a = C s
13 11 12 eleq12d a = s F a u C a F s u C s
14 13 cbvralvw a A F a u C a s A F s u C s
15 9 14 sylib A R B S a A F a : B C a u B s A F s u C s
16 simpl1 A R B S a A F a : B C a u B A R
17 mptelixpg A R s A F s u s A C s s A F s u C s
18 16 17 syl A R B S a A F a : B C a u B s A F s u s A C s s A F s u C s
19 15 18 mpbird A R B S a A F a : B C a u B s A F s u s A C s
20 fveq2 b = s C b = C s
21 20 cbvixpv b A C b = s A C s
22 1 21 eqtri X = s A C s
23 19 22 eleqtrrdi A R B S a A F a : B C a u B s A F s u X
24 23 fmpttd A R B S a A F a : B C a u B s A F s u : B X
25 nfv a A R
26 nfv a B S
27 nfra1 a a A F a : B C a
28 25 26 27 nf3an a A R B S a A F a : B C a
29 fveq2 s = a F s = F a
30 29 fveq1d s = a F s u = F a u
31 eqid s A F s u = s A F s u
32 fvex F s u V
33 30 31 32 fvmpt3i a A s A F s u a = F a u
34 33 adantl A R B S a A F a : B C a a A s A F s u a = F a u
35 34 mpteq2dv A R B S a A F a : B C a a A u B s A F s u a = u B F a u
36 23 adantlr A R B S a A F a : B C a a A u B s A F s u X
37 eqidd A R B S a A F a : B C a a A u B s A F s u = u B s A F s u
38 fveq2 w = a x w = x a
39 38 mpteq2dv w = a x X x w = x X x a
40 fvex C b V
41 40 rgenw b A C b V
42 ixpexg b A C b V b A C b V
43 41 42 ax-mp b A C b V
44 1 43 eqeltri X V
45 44 mptex x X x w V
46 39 2 45 fvmpt3i a A P a = x X x a
47 46 adantl A R B S a A F a : B C a a A P a = x X x a
48 fveq1 x = s A F s u x a = s A F s u a
49 36 37 47 48 fmptco A R B S a A F a : B C a a A P a u B s A F s u = u B s A F s u a
50 rsp a A F a : B C a a A F a : B C a
51 50 3ad2ant3 A R B S a A F a : B C a a A F a : B C a
52 51 imp A R B S a A F a : B C a a A F a : B C a
53 52 feqmptd A R B S a A F a : B C a a A F a = u B F a u
54 35 49 53 3eqtr4rd A R B S a A F a : B C a a A F a = P a u B s A F s u
55 54 ex A R B S a A F a : B C a a A F a = P a u B s A F s u
56 28 55 ralrimi A R B S a A F a : B C a a A F a = P a u B s A F s u
57 simprl A R B S a A F a : B C a h : B X a A F a = P a h h : B X
58 57 feqmptd A R B S a A F a : B C a h : B X a A F a = P a h h = u B h u
59 simplrr A R B S a A F a : B C a h : B X a A F a = P a h u B a A F a = P a h
60 fveq2 a = s P a = P s
61 60 coeq1d a = s P a h = P s h
62 10 61 eqeq12d a = s F a = P a h F s = P s h
63 62 rspccva a A F a = P a h s A F s = P s h
64 59 63 sylan A R B S a A F a : B C a h : B X a A F a = P a h u B s A F s = P s h
65 64 fveq1d A R B S a A F a : B C a h : B X a A F a = P a h u B s A F s u = P s h u
66 fvco3 h : B X u B P s h u = P s h u
67 57 66 sylan A R B S a A F a : B C a h : B X a A F a = P a h u B P s h u = P s h u
68 67 adantr A R B S a A F a : B C a h : B X a A F a = P a h u B s A P s h u = P s h u
69 fveq2 w = s x w = x s
70 69 mpteq2dv w = s x X x w = x X x s
71 70 2 45 fvmpt3i s A P s = x X x s
72 71 adantl A R B S a A F a : B C a h : B X a A F a = P a h u B s A P s = x X x s
73 72 fveq1d A R B S a A F a : B C a h : B X a A F a = P a h u B s A P s h u = x X x s h u
74 ffvelrn h : B X u B h u X
75 57 74 sylan A R B S a A F a : B C a h : B X a A F a = P a h u B h u X
76 fveq1 x = h u x s = h u s
77 eqid x X x s = x X x s
78 fvex x s V
79 76 77 78 fvmpt3i h u X x X x s h u = h u s
80 75 79 syl A R B S a A F a : B C a h : B X a A F a = P a h u B x X x s h u = h u s
81 80 adantr A R B S a A F a : B C a h : B X a A F a = P a h u B s A x X x s h u = h u s
82 73 81 eqtrd A R B S a A F a : B C a h : B X a A F a = P a h u B s A P s h u = h u s
83 65 68 82 3eqtrd A R B S a A F a : B C a h : B X a A F a = P a h u B s A F s u = h u s
84 83 mpteq2dva A R B S a A F a : B C a h : B X a A F a = P a h u B s A F s u = s A h u s
85 75 1 eleqtrdi A R B S a A F a : B C a h : B X a A F a = P a h u B h u b A C b
86 ixpfn h u b A C b h u Fn A
87 85 86 syl A R B S a A F a : B C a h : B X a A F a = P a h u B h u Fn A
88 dffn5 h u Fn A h u = s A h u s
89 87 88 sylib A R B S a A F a : B C a h : B X a A F a = P a h u B h u = s A h u s
90 84 89 eqtr4d A R B S a A F a : B C a h : B X a A F a = P a h u B s A F s u = h u
91 90 mpteq2dva A R B S a A F a : B C a h : B X a A F a = P a h u B s A F s u = u B h u
92 58 91 eqtr4d A R B S a A F a : B C a h : B X a A F a = P a h h = u B s A F s u
93 92 ex A R B S a A F a : B C a h : B X a A F a = P a h h = u B s A F s u
94 93 alrimiv A R B S a A F a : B C a h h : B X a A F a = P a h h = u B s A F s u
95 feq1 h = u B s A F s u h : B X u B s A F s u : B X
96 coeq2 h = u B s A F s u P a h = P a u B s A F s u
97 96 eqeq2d h = u B s A F s u F a = P a h F a = P a u B s A F s u
98 97 ralbidv h = u B s A F s u a A F a = P a h a A F a = P a u B s A F s u
99 95 98 anbi12d h = u B s A F s u h : B X a A F a = P a h u B s A F s u : B X a A F a = P a u B s A F s u
100 99 eqeu u B s A F s u V u B s A F s u : B X a A F a = P a u B s A F s u h h : B X a A F a = P a h h = u B s A F s u ∃! h h : B X a A F a = P a h
101 4 24 56 94 100 syl121anc A R B S a A F a : B C a ∃! h h : B X a A F a = P a h