Metamath Proof Explorer


Theorem xblss2ps

Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 for extended metrics, we have to assume the balls are a finite distance apart, or else P will not even be in the infinity ball around Q . (Contributed by Mario Carneiro, 23-Aug-2015) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Hypotheses xblss2ps.1 φDPsMetX
xblss2ps.2 φPX
xblss2ps.3 φQX
xblss2ps.4 φR*
xblss2ps.5 φS*
xblss2ps.6 φPDQ
xblss2ps.7 φPDQS+𝑒R
Assertion xblss2ps φPballDRQballDS

Proof

Step Hyp Ref Expression
1 xblss2ps.1 φDPsMetX
2 xblss2ps.2 φPX
3 xblss2ps.3 φQX
4 xblss2ps.4 φR*
5 xblss2ps.5 φS*
6 xblss2ps.6 φPDQ
7 xblss2ps.7 φPDQS+𝑒R
8 elblps DPsMetXPXR*xPballDRxXPDx<R
9 1 2 4 8 syl3anc φxPballDRxXPDx<R
10 9 simprbda φxPballDRxX
11 1 adantr φxPballDRDPsMetX
12 3 adantr φxPballDRQX
13 psmetcl DPsMetXQXxXQDx*
14 11 12 10 13 syl3anc φxPballDRQDx*
15 14 adantr φxPballDRRQDx*
16 6 adantr φxPballDRPDQ
17 16 rexrd φxPballDRPDQ*
18 4 adantr φxPballDRR*
19 17 18 xaddcld φxPballDRPDQ+𝑒R*
20 19 adantr φxPballDRRPDQ+𝑒R*
21 5 ad2antrr φxPballDRRS*
22 2 adantr φxPballDRPX
23 psmetcl DPsMetXPXxXPDx*
24 11 22 10 23 syl3anc φxPballDRPDx*
25 17 24 xaddcld φxPballDRPDQ+𝑒PDx*
26 psmettri2 DPsMetXPXQXxXQDxPDQ+𝑒PDx
27 11 22 12 10 26 syl13anc φxPballDRQDxPDQ+𝑒PDx
28 9 simplbda φxPballDRPDx<R
29 xltadd2 PDx*R*PDQPDx<RPDQ+𝑒PDx<PDQ+𝑒R
30 24 18 16 29 syl3anc φxPballDRPDx<RPDQ+𝑒PDx<PDQ+𝑒R
31 28 30 mpbid φxPballDRPDQ+𝑒PDx<PDQ+𝑒R
32 14 25 19 27 31 xrlelttrd φxPballDRQDx<PDQ+𝑒R
33 32 adantr φxPballDRRQDx<PDQ+𝑒R
34 5 adantr φxPballDRS*
35 18 xnegcld φxPballDRR*
36 34 35 xaddcld φxPballDRS+𝑒R*
37 7 adantr φxPballDRPDQS+𝑒R
38 xleadd1a PDQ*S+𝑒R*R*PDQS+𝑒RPDQ+𝑒RS+𝑒R+𝑒R
39 17 36 18 37 38 syl31anc φxPballDRPDQ+𝑒RS+𝑒R+𝑒R
40 39 adantr φxPballDRRPDQ+𝑒RS+𝑒R+𝑒R
41 xnpcan S*RS+𝑒R+𝑒R=S
42 34 41 sylan φxPballDRRS+𝑒R+𝑒R=S
43 40 42 breqtrd φxPballDRRPDQ+𝑒RS
44 15 20 21 33 43 xrltletrd φxPballDRRQDx<S
45 14 adantr φxPballDRR=+∞QDx*
46 6 ad2antrr φxPballDRR=+∞PDQ
47 simpll φxPballDRR=+∞φ
48 simplr φxPballDRR=+∞xPballDR
49 simpr φxPballDRR=+∞R=+∞
50 49 oveq2d φxPballDRR=+∞PballDR=PballD+∞
51 48 50 eleqtrd φxPballDRR=+∞xPballD+∞
52 xblpnfps DPsMetXPXxPballD+∞xXPDx
53 1 2 52 syl2anc φxPballD+∞xXPDx
54 53 simplbda φxPballD+∞PDx
55 47 51 54 syl2anc φxPballDRR=+∞PDx
56 46 55 readdcld φxPballDRR=+∞PDQ+PDx
57 56 rexrd φxPballDRR=+∞PDQ+PDx*
58 pnfxr +∞*
59 58 a1i φxPballDRR=+∞+∞*
60 1 ad2antrr φxPballDRR=+∞DPsMetX
61 2 ad2antrr φxPballDRR=+∞PX
62 3 ad2antrr φxPballDRR=+∞QX
63 10 adantr φxPballDRR=+∞xX
64 60 61 62 63 26 syl13anc φxPballDRR=+∞QDxPDQ+𝑒PDx
65 46 55 rexaddd φxPballDRR=+∞PDQ+𝑒PDx=PDQ+PDx
66 64 65 breqtrd φxPballDRR=+∞QDxPDQ+PDx
67 56 ltpnfd φxPballDRR=+∞PDQ+PDx<+∞
68 45 57 59 66 67 xrlelttrd φxPballDRR=+∞QDx<+∞
69 0xr 0*
70 69 a1i φxPballDR0*
71 psmetge0 DPsMetXPXQX0PDQ
72 11 22 12 71 syl3anc φxPballDR0PDQ
73 70 17 36 72 37 xrletrd φxPballDR0S+𝑒R
74 ge0nemnf S+𝑒R*0S+𝑒RS+𝑒R−∞
75 36 73 74 syl2anc φxPballDRS+𝑒R−∞
76 75 adantr φxPballDRR=+∞S+𝑒R−∞
77 5 ad2antrr φxPballDRR=+∞S*
78 xaddmnf1 S*S+∞S+𝑒−∞=−∞
79 78 ex S*S+∞S+𝑒−∞=−∞
80 77 79 syl φxPballDRR=+∞S+∞S+𝑒−∞=−∞
81 xnegeq R=+∞R=+∞
82 49 81 syl φxPballDRR=+∞R=+∞
83 xnegpnf +∞=−∞
84 82 83 eqtrdi φxPballDRR=+∞R=−∞
85 84 oveq2d φxPballDRR=+∞S+𝑒R=S+𝑒−∞
86 85 eqeq1d φxPballDRR=+∞S+𝑒R=−∞S+𝑒−∞=−∞
87 80 86 sylibrd φxPballDRR=+∞S+∞S+𝑒R=−∞
88 87 necon1d φxPballDRR=+∞S+𝑒R−∞S=+∞
89 76 88 mpd φxPballDRR=+∞S=+∞
90 68 89 breqtrrd φxPballDRR=+∞QDx<S
91 psmetge0 DPsMetXPXxX0PDx
92 11 22 10 91 syl3anc φxPballDR0PDx
93 70 24 18 92 28 xrlelttrd φxPballDR0<R
94 70 18 93 xrltled φxPballDR0R
95 ge0nemnf R*0RR−∞
96 18 94 95 syl2anc φxPballDRR−∞
97 18 96 jca φxPballDRR*R−∞
98 xrnemnf R*R−∞RR=+∞
99 97 98 sylib φxPballDRRR=+∞
100 44 90 99 mpjaodan φxPballDRQDx<S
101 elblps DPsMetXQXS*xQballDSxXQDx<S
102 11 12 34 101 syl3anc φxPballDRxQballDSxXQDx<S
103 10 100 102 mpbir2and φxPballDRxQballDS
104 103 ex φxPballDRxQballDS
105 104 ssrdv φPballDRQballDS