| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvgrat.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
cvgrat.2 |
⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) |
| 3 |
|
cvgrat.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
cvgrat.4 |
⊢ ( 𝜑 → 𝐴 < 1 ) |
| 5 |
|
cvgrat.5 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 6 |
|
cvgrat.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 7 |
|
cvgrat.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( 𝐴 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 8 |
5 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 11 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 13 |
12 2
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑁 ∈ 𝑊 ) |
| 14 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 − 𝑁 ) = ( 𝑘 − 𝑁 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 16 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) = ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) |
| 17 |
|
ovex |
⊢ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ∈ V |
| 18 |
15 16 17
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑊 → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 20 |
|
0re |
⊢ 0 ∈ ℝ |
| 21 |
|
ifcl |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ) |
| 22 |
20 3 21
|
sylancr |
⊢ ( 𝜑 → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑊 ) |
| 25 |
24 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 26 |
|
uznn0sub |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑘 − 𝑁 ) ∈ ℕ0 ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝑘 − 𝑁 ) ∈ ℕ0 ) |
| 28 |
23 27
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ∈ ℝ ) |
| 29 |
19 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 30 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 31 |
8 30
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 |
31 2 1
|
3sstr4g |
⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) |
| 33 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑍 ) |
| 34 |
33 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 35 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 − 𝑁 ) ∈ ℕ0 ) |
| 36 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 − 𝑁 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 37 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) |
| 38 |
36 37 17
|
fvmpt |
⊢ ( ( 𝑘 − 𝑁 ) ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ ( 𝑘 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 39 |
35 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ ( 𝑘 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 40 |
10
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 41 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ℤ ) |
| 42 |
41
|
zcnd |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ℂ ) |
| 43 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 44 |
43
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ∈ V |
| 45 |
44
|
shftval |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ ( 𝑘 − 𝑁 ) ) ) |
| 46 |
40 42 45
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ ( 𝑘 − 𝑁 ) ) ) |
| 47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 48 |
47 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑊 ) |
| 49 |
48 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) |
| 50 |
39 46 49
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ‘ 𝑘 ) ) |
| 51 |
10 50
|
seqfeq |
⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) = seq 𝑁 ( + , ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ) ) |
| 52 |
44
|
seqshft |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → seq 𝑁 ( + , ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ) = ( seq ( 𝑁 − 𝑁 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ) |
| 53 |
10 10 52
|
syl2anc |
⊢ ( 𝜑 → seq 𝑁 ( + , ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) shift 𝑁 ) ) = ( seq ( 𝑁 − 𝑁 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ) |
| 54 |
40
|
subidd |
⊢ ( 𝜑 → ( 𝑁 − 𝑁 ) = 0 ) |
| 55 |
54
|
seqeq1d |
⊢ ( 𝜑 → seq ( 𝑁 − 𝑁 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ) |
| 56 |
55
|
oveq1d |
⊢ ( 𝜑 → ( seq ( 𝑁 − 𝑁 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ) |
| 57 |
51 53 56
|
3eqtrd |
⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ) |
| 58 |
22
|
recnd |
⊢ ( 𝜑 → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℂ ) |
| 59 |
|
max2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 60 |
3 20 59
|
sylancl |
⊢ ( 𝜑 → 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 61 |
22 60
|
absidd |
⊢ ( 𝜑 → ( abs ‘ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) = if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 62 |
|
0lt1 |
⊢ 0 < 1 |
| 63 |
|
breq1 |
⊢ ( 0 = if ( 𝐴 ≤ 0 , 0 , 𝐴 ) → ( 0 < 1 ↔ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) < 1 ) ) |
| 64 |
|
breq1 |
⊢ ( 𝐴 = if ( 𝐴 ≤ 0 , 0 , 𝐴 ) → ( 𝐴 < 1 ↔ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) < 1 ) ) |
| 65 |
63 64
|
ifboth |
⊢ ( ( 0 < 1 ∧ 𝐴 < 1 ) → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) < 1 ) |
| 66 |
62 4 65
|
sylancr |
⊢ ( 𝜑 → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) < 1 ) |
| 67 |
61 66
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) < 1 ) |
| 68 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑘 ) ) |
| 69 |
|
ovex |
⊢ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑘 ) ∈ V |
| 70 |
68 37 69
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑘 ) ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑘 ) ) |
| 72 |
58 67 71
|
geolim |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ) |
| 73 |
|
seqex |
⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ∈ V |
| 74 |
|
climshft |
⊢ ( ( 𝑁 ∈ ℤ ∧ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ∈ V ) → ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ↔ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ) ) |
| 75 |
10 73 74
|
sylancl |
⊢ ( 𝜑 → ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ↔ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ) ) |
| 76 |
72 75
|
mpbird |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ) |
| 77 |
|
ovex |
⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ∈ V |
| 78 |
|
ovex |
⊢ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ∈ V |
| 79 |
77 78
|
breldm |
⊢ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ⇝ ( 1 / ( 1 − if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ∈ dom ⇝ ) |
| 80 |
76 79
|
syl |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 𝑛 ) ) ) shift 𝑁 ) ∈ dom ⇝ ) |
| 81 |
57 80
|
eqeltrd |
⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) ∈ dom ⇝ ) |
| 82 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 83 |
82
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) ) |
| 84 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 85 |
83 84 5
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
| 86 |
85
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ ) |
| 87 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑁 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 88 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 𝑁 ) = ( 𝑁 − 𝑁 ) ) |
| 89 |
88
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) |
| 90 |
89
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) ) |
| 91 |
87 90
|
breq12d |
⊢ ( 𝑛 = 𝑁 → ( ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) ) ) |
| 92 |
91
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) ) ) ) |
| 93 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 94 |
15
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) |
| 95 |
93 94
|
breq12d |
⊢ ( 𝑛 = 𝑘 → ( ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) |
| 96 |
95
|
imbi2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) ) |
| 97 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 98 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 − 𝑁 ) = ( ( 𝑘 + 1 ) − 𝑁 ) ) |
| 99 |
98
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) |
| 100 |
99
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) |
| 101 |
97 100
|
breq12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ↔ ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 102 |
101
|
imbi2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) ) |
| 103 |
86
|
leidd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 104 |
54
|
oveq2d |
⊢ ( 𝜑 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 0 ) ) |
| 105 |
58
|
exp0d |
⊢ ( 𝜑 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ 0 ) = 1 ) |
| 106 |
104 105
|
eqtrd |
⊢ ( 𝜑 → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) = 1 ) |
| 107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · 1 ) ) |
| 108 |
86
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℂ ) |
| 109 |
108
|
mulridd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · 1 ) = ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 110 |
107 109
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 111 |
103 110
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑁 − 𝑁 ) ) ) ) |
| 112 |
34
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 113 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ ) |
| 114 |
113 28
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ∈ ℝ ) |
| 115 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 116 |
|
lemul2a |
⊢ ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ∈ ℝ ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ∧ 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) |
| 117 |
116
|
ex |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ∈ ℝ ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℝ ∧ 0 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) ) |
| 118 |
112 114 23 115 117
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) ) |
| 119 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ∈ ℂ ) |
| 120 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℂ ) |
| 121 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ∈ ℂ ) |
| 122 |
119 120 121
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) |
| 123 |
119 27
|
expp1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 − 𝑁 ) + 1 ) ) = ( ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) · if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) |
| 124 |
42 2
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑊 → 𝑘 ∈ ℂ ) |
| 125 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 126 |
|
addsub |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 𝑁 ) = ( ( 𝑘 − 𝑁 ) + 1 ) ) |
| 127 |
125 126
|
mp3an2 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 𝑁 ) = ( ( 𝑘 − 𝑁 ) + 1 ) ) |
| 128 |
124 40 127
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( 𝑘 + 1 ) − 𝑁 ) = ( ( 𝑘 − 𝑁 ) + 1 ) ) |
| 129 |
128
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 − 𝑁 ) + 1 ) ) ) |
| 130 |
119 121
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) = ( ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) · if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) ) |
| 131 |
123 129 130
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) = ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) |
| 132 |
131
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) |
| 133 |
122 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) |
| 134 |
133
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ↔ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 135 |
118 134
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 136 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 137 |
136
|
eleq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) ) |
| 138 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 139 |
138
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) ) |
| 140 |
139
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 141 |
84 140
|
sylib |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 142 |
141
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 143 |
2
|
peano2uzs |
⊢ ( 𝑘 ∈ 𝑊 → ( 𝑘 + 1 ) ∈ 𝑊 ) |
| 144 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ 𝑊 ) → ( 𝑘 + 1 ) ∈ 𝑍 ) |
| 145 |
143 144
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝑘 + 1 ) ∈ 𝑍 ) |
| 146 |
137 142 145
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 147 |
146
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 148 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ∈ ℝ ) |
| 149 |
148 112
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 150 |
23 112
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 151 |
34
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 152 |
|
max1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → 𝐴 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 153 |
3 20 152
|
sylancl |
⊢ ( 𝜑 → 𝐴 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 154 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ≤ if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ) |
| 155 |
148 23 112 151 154
|
lemul1ad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐴 · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 156 |
147 149 150 7 155
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 157 |
|
peano2uz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 158 |
25 157
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 159 |
|
uznn0sub |
⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝑘 + 1 ) − 𝑁 ) ∈ ℕ0 ) |
| 160 |
158 159
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( 𝑘 + 1 ) − 𝑁 ) ∈ ℕ0 ) |
| 161 |
23 160
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ∈ ℝ ) |
| 162 |
113 161
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ∈ ℝ ) |
| 163 |
|
letr |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ∧ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 164 |
147 150 162 163
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 165 |
156 164
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 166 |
135 165
|
syld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 167 |
48 166
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) |
| 168 |
167
|
expcom |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) ) |
| 169 |
168
|
a2d |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) → ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( ( 𝑘 + 1 ) − 𝑁 ) ) ) ) ) ) |
| 170 |
92 96 102 96 111 169
|
uzind4i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) ) |
| 171 |
170
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) |
| 172 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑘 − 𝑁 ) ) ) ) |
| 173 |
171 172
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ 𝑁 ) ) · ( ( 𝑛 ∈ 𝑊 ↦ ( if ( 𝐴 ≤ 0 , 0 , 𝐴 ) ↑ ( 𝑛 − 𝑁 ) ) ) ‘ 𝑘 ) ) ) |
| 174 |
2 13 29 34 81 86 173
|
cvgcmpce |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 175 |
1 5 6
|
iserex |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 176 |
174 175
|
mpbird |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |