Metamath Proof Explorer


Theorem cvgrat

Description: Ratio test for convergence of a complex infinite series. If the ratio A of the absolute values of successive terms in an infinite sequence F is less than 1 for all terms beyond some index B , then the infinite sum of the terms of F converges to a complex number. Equivalent to first part of Exercise 4 of Gleason p. 182. (Contributed by NM, 26-Apr-2005) (Proof shortened by Mario Carneiro, 27-Apr-2014)

Ref Expression
Hypotheses cvgrat.1 Z = M
cvgrat.2 W = N
cvgrat.3 φ A
cvgrat.4 φ A < 1
cvgrat.5 φ N Z
cvgrat.6 φ k Z F k
cvgrat.7 φ k W F k + 1 A F k
Assertion cvgrat φ seq M + F dom

Proof

Step Hyp Ref Expression
1 cvgrat.1 Z = M
2 cvgrat.2 W = N
3 cvgrat.3 φ A
4 cvgrat.4 φ A < 1
5 cvgrat.5 φ N Z
6 cvgrat.6 φ k Z F k
7 cvgrat.7 φ k W F k + 1 A F k
8 5 1 eleqtrdi φ N M
9 eluzelz N M N
10 8 9 syl φ N
11 uzid N N N
12 10 11 syl φ N N
13 12 2 eleqtrrdi φ N W
14 oveq1 n = k n N = k N
15 14 oveq2d n = k if A 0 0 A n N = if A 0 0 A k N
16 eqid n W if A 0 0 A n N = n W if A 0 0 A n N
17 ovex if A 0 0 A k N V
18 15 16 17 fvmpt k W n W if A 0 0 A n N k = if A 0 0 A k N
19 18 adantl φ k W n W if A 0 0 A n N k = if A 0 0 A k N
20 0re 0
21 ifcl 0 A if A 0 0 A
22 20 3 21 sylancr φ if A 0 0 A
23 22 adantr φ k W if A 0 0 A
24 simpr φ k W k W
25 24 2 eleqtrdi φ k W k N
26 uznn0sub k N k N 0
27 25 26 syl φ k W k N 0
28 23 27 reexpcld φ k W if A 0 0 A k N
29 19 28 eqeltrd φ k W n W if A 0 0 A n N k
30 uzss N M N M
31 8 30 syl φ N M
32 31 2 1 3sstr4g φ W Z
33 32 sselda φ k W k Z
34 33 6 syldan φ k W F k
35 26 adantl φ k N k N 0
36 oveq2 n = k N if A 0 0 A n = if A 0 0 A k N
37 eqid n 0 if A 0 0 A n = n 0 if A 0 0 A n
38 36 37 17 fvmpt k N 0 n 0 if A 0 0 A n k N = if A 0 0 A k N
39 35 38 syl φ k N n 0 if A 0 0 A n k N = if A 0 0 A k N
40 10 zcnd φ N
41 eluzelz k N k
42 41 zcnd k N k
43 nn0ex 0 V
44 43 mptex n 0 if A 0 0 A n V
45 44 shftval N k n 0 if A 0 0 A n shift N k = n 0 if A 0 0 A n k N
46 40 42 45 syl2an φ k N n 0 if A 0 0 A n shift N k = n 0 if A 0 0 A n k N
47 simpr φ k N k N
48 47 2 eleqtrrdi φ k N k W
49 48 18 syl φ k N n W if A 0 0 A n N k = if A 0 0 A k N
50 39 46 49 3eqtr4rd φ k N n W if A 0 0 A n N k = n 0 if A 0 0 A n shift N k
51 10 50 seqfeq φ seq N + n W if A 0 0 A n N = seq N + n 0 if A 0 0 A n shift N
52 44 seqshft N N seq N + n 0 if A 0 0 A n shift N = seq N N + n 0 if A 0 0 A n shift N
53 10 10 52 syl2anc φ seq N + n 0 if A 0 0 A n shift N = seq N N + n 0 if A 0 0 A n shift N
54 40 subidd φ N N = 0
55 54 seqeq1d φ seq N N + n 0 if A 0 0 A n = seq 0 + n 0 if A 0 0 A n
56 55 oveq1d φ seq N N + n 0 if A 0 0 A n shift N = seq 0 + n 0 if A 0 0 A n shift N
57 51 53 56 3eqtrd φ seq N + n W if A 0 0 A n N = seq 0 + n 0 if A 0 0 A n shift N
58 22 recnd φ if A 0 0 A
59 max2 A 0 0 if A 0 0 A
60 3 20 59 sylancl φ 0 if A 0 0 A
61 22 60 absidd φ if A 0 0 A = if A 0 0 A
62 0lt1 0 < 1
63 breq1 0 = if A 0 0 A 0 < 1 if A 0 0 A < 1
64 breq1 A = if A 0 0 A A < 1 if A 0 0 A < 1
65 63 64 ifboth 0 < 1 A < 1 if A 0 0 A < 1
66 62 4 65 sylancr φ if A 0 0 A < 1
67 61 66 eqbrtrd φ if A 0 0 A < 1
68 oveq2 n = k if A 0 0 A n = if A 0 0 A k
69 ovex if A 0 0 A k V
70 68 37 69 fvmpt k 0 n 0 if A 0 0 A n k = if A 0 0 A k
71 70 adantl φ k 0 n 0 if A 0 0 A n k = if A 0 0 A k
72 58 67 71 geolim φ seq 0 + n 0 if A 0 0 A n 1 1 if A 0 0 A
73 seqex seq 0 + n 0 if A 0 0 A n V
74 climshft N seq 0 + n 0 if A 0 0 A n V seq 0 + n 0 if A 0 0 A n shift N 1 1 if A 0 0 A seq 0 + n 0 if A 0 0 A n 1 1 if A 0 0 A
75 10 73 74 sylancl φ seq 0 + n 0 if A 0 0 A n shift N 1 1 if A 0 0 A seq 0 + n 0 if A 0 0 A n 1 1 if A 0 0 A
76 72 75 mpbird φ seq 0 + n 0 if A 0 0 A n shift N 1 1 if A 0 0 A
77 ovex seq 0 + n 0 if A 0 0 A n shift N V
78 ovex 1 1 if A 0 0 A V
79 77 78 breldm seq 0 + n 0 if A 0 0 A n shift N 1 1 if A 0 0 A seq 0 + n 0 if A 0 0 A n shift N dom
80 76 79 syl φ seq 0 + n 0 if A 0 0 A n shift N dom
81 57 80 eqeltrd φ seq N + n W if A 0 0 A n N dom
82 fveq2 k = N F k = F N
83 82 eleq1d k = N F k F N
84 6 ralrimiva φ k Z F k
85 83 84 5 rspcdva φ F N
86 85 abscld φ F N
87 2fveq3 n = N F n = F N
88 oveq1 n = N n N = N N
89 88 oveq2d n = N if A 0 0 A n N = if A 0 0 A N N
90 89 oveq2d n = N F N if A 0 0 A n N = F N if A 0 0 A N N
91 87 90 breq12d n = N F n F N if A 0 0 A n N F N F N if A 0 0 A N N
92 91 imbi2d n = N φ F n F N if A 0 0 A n N φ F N F N if A 0 0 A N N
93 2fveq3 n = k F n = F k
94 15 oveq2d n = k F N if A 0 0 A n N = F N if A 0 0 A k N
95 93 94 breq12d n = k F n F N if A 0 0 A n N F k F N if A 0 0 A k N
96 95 imbi2d n = k φ F n F N if A 0 0 A n N φ F k F N if A 0 0 A k N
97 2fveq3 n = k + 1 F n = F k + 1
98 oveq1 n = k + 1 n N = k + 1 - N
99 98 oveq2d n = k + 1 if A 0 0 A n N = if A 0 0 A k + 1 - N
100 99 oveq2d n = k + 1 F N if A 0 0 A n N = F N if A 0 0 A k + 1 - N
101 97 100 breq12d n = k + 1 F n F N if A 0 0 A n N F k + 1 F N if A 0 0 A k + 1 - N
102 101 imbi2d n = k + 1 φ F n F N if A 0 0 A n N φ F k + 1 F N if A 0 0 A k + 1 - N
103 86 leidd φ F N F N
104 54 oveq2d φ if A 0 0 A N N = if A 0 0 A 0
105 58 exp0d φ if A 0 0 A 0 = 1
106 104 105 eqtrd φ if A 0 0 A N N = 1
107 106 oveq2d φ F N if A 0 0 A N N = F N 1
108 86 recnd φ F N
109 108 mulid1d φ F N 1 = F N
110 107 109 eqtrd φ F N if A 0 0 A N N = F N
111 103 110 breqtrrd φ F N F N if A 0 0 A N N
112 34 abscld φ k W F k
113 86 adantr φ k W F N
114 113 28 remulcld φ k W F N if A 0 0 A k N
115 60 adantr φ k W 0 if A 0 0 A
116 lemul2a F k F N if A 0 0 A k N if A 0 0 A 0 if A 0 0 A F k F N if A 0 0 A k N if A 0 0 A F k if A 0 0 A F N if A 0 0 A k N
117 116 ex F k F N if A 0 0 A k N if A 0 0 A 0 if A 0 0 A F k F N if A 0 0 A k N if A 0 0 A F k if A 0 0 A F N if A 0 0 A k N
118 112 114 23 115 117 syl112anc φ k W F k F N if A 0 0 A k N if A 0 0 A F k if A 0 0 A F N if A 0 0 A k N
119 58 adantr φ k W if A 0 0 A
120 108 adantr φ k W F N
121 28 recnd φ k W if A 0 0 A k N
122 119 120 121 mul12d φ k W if A 0 0 A F N if A 0 0 A k N = F N if A 0 0 A if A 0 0 A k N
123 119 27 expp1d φ k W if A 0 0 A k - N + 1 = if A 0 0 A k N if A 0 0 A
124 42 2 eleq2s k W k
125 ax-1cn 1
126 addsub k 1 N k + 1 - N = k - N + 1
127 125 126 mp3an2 k N k + 1 - N = k - N + 1
128 124 40 127 syl2anr φ k W k + 1 - N = k - N + 1
129 128 oveq2d φ k W if A 0 0 A k + 1 - N = if A 0 0 A k - N + 1
130 119 121 mulcomd φ k W if A 0 0 A if A 0 0 A k N = if A 0 0 A k N if A 0 0 A
131 123 129 130 3eqtr4rd φ k W if A 0 0 A if A 0 0 A k N = if A 0 0 A k + 1 - N
132 131 oveq2d φ k W F N if A 0 0 A if A 0 0 A k N = F N if A 0 0 A k + 1 - N
133 122 132 eqtrd φ k W if A 0 0 A F N if A 0 0 A k N = F N if A 0 0 A k + 1 - N
134 133 breq2d φ k W if A 0 0 A F k if A 0 0 A F N if A 0 0 A k N if A 0 0 A F k F N if A 0 0 A k + 1 - N
135 118 134 sylibd φ k W F k F N if A 0 0 A k N if A 0 0 A F k F N if A 0 0 A k + 1 - N
136 fveq2 n = k + 1 F n = F k + 1
137 136 eleq1d n = k + 1 F n F k + 1
138 fveq2 k = n F k = F n
139 138 eleq1d k = n F k F n
140 139 cbvralvw k Z F k n Z F n
141 84 140 sylib φ n Z F n
142 141 adantr φ k W n Z F n
143 2 peano2uzs k W k + 1 W
144 32 sselda φ k + 1 W k + 1 Z
145 143 144 sylan2 φ k W k + 1 Z
146 137 142 145 rspcdva φ k W F k + 1
147 146 abscld φ k W F k + 1
148 3 adantr φ k W A
149 148 112 remulcld φ k W A F k
150 23 112 remulcld φ k W if A 0 0 A F k
151 34 absge0d φ k W 0 F k
152 max1 A 0 A if A 0 0 A
153 3 20 152 sylancl φ A if A 0 0 A
154 153 adantr φ k W A if A 0 0 A
155 148 23 112 151 154 lemul1ad φ k W A F k if A 0 0 A F k
156 147 149 150 7 155 letrd φ k W F k + 1 if A 0 0 A F k
157 peano2uz k N k + 1 N
158 25 157 syl φ k W k + 1 N
159 uznn0sub k + 1 N k + 1 - N 0
160 158 159 syl φ k W k + 1 - N 0
161 23 160 reexpcld φ k W if A 0 0 A k + 1 - N
162 113 161 remulcld φ k W F N if A 0 0 A k + 1 - N
163 letr F k + 1 if A 0 0 A F k F N if A 0 0 A k + 1 - N F k + 1 if A 0 0 A F k if A 0 0 A F k F N if A 0 0 A k + 1 - N F k + 1 F N if A 0 0 A k + 1 - N
164 147 150 162 163 syl3anc φ k W F k + 1 if A 0 0 A F k if A 0 0 A F k F N if A 0 0 A k + 1 - N F k + 1 F N if A 0 0 A k + 1 - N
165 156 164 mpand φ k W if A 0 0 A F k F N if A 0 0 A k + 1 - N F k + 1 F N if A 0 0 A k + 1 - N
166 135 165 syld φ k W F k F N if A 0 0 A k N F k + 1 F N if A 0 0 A k + 1 - N
167 48 166 syldan φ k N F k F N if A 0 0 A k N F k + 1 F N if A 0 0 A k + 1 - N
168 167 expcom k N φ F k F N if A 0 0 A k N F k + 1 F N if A 0 0 A k + 1 - N
169 168 a2d k N φ F k F N if A 0 0 A k N φ F k + 1 F N if A 0 0 A k + 1 - N
170 92 96 102 96 111 169 uzind4i k N φ F k F N if A 0 0 A k N
171 170 impcom φ k N F k F N if A 0 0 A k N
172 49 oveq2d φ k N F N n W if A 0 0 A n N k = F N if A 0 0 A k N
173 171 172 breqtrrd φ k N F k F N n W if A 0 0 A n N k
174 2 13 29 34 81 86 173 cvgcmpce φ seq N + F dom
175 1 5 6 iserex φ seq M + F dom seq N + F dom
176 174 175 mpbird φ seq M + F dom